Matrix Transformations on Some Difference Sequence Spaces

Z. U. Siddiqui, A. Kiltho

Department of Mathematics and Statistics, University of Maiduguri, Nigeria

Abstract: The sequence spaces $l_{\infty}(u, v, \Delta)$, $c_0(u, v, \Delta)$ and $c(u, v, \Delta)$ were recently introduced. The matrix classes $(c(u, v, \Delta): c)$ and $(c(u, v, \Delta): l_{\infty})$ were characterized. The object of this paper is to further determine the necessary and sufficient conditions on an infinite matrix to characterize the matrix classes $(c(u, v, \Delta): l_{\infty})$ so and $(c(u, v, \Delta): l_{\infty})$. It is observed that the later characterizations are additions to the existing ones. **Keywords-** Difference operators, Duals, Generalized weighted mean, Matrix transformations

I. Introduction

The sequence spaces $l_{\infty}(\Delta)$, $c_0(\Delta)$ and $c(\Delta)$ were first introduced by Kizmaz [6] in 1981. Similar to the sequence spaces $l_{\infty}(p)$, $c_0(p)$ and c(p) for $p_k > 1$ of Maddox [7] and Simons [10], the Δ - sequence spaces above were extended to $\Delta l_{\infty}(p)$, $\Delta c_0(p)$ and $\Delta c(p)$ by Ahmad and Mursaleen [1] in ... The concept of difference operators has been discussed and used by Polat and Başar [8] and by Altay and Başar [2], both in 2007.

The idea of generalized weighted mean was applied by Altay and Başar [3], in 2006. This concept depends on the idea of G(u, v)- transforms which has been used by Polat, *et al* [10] and by Basarir and Kara [4]. We shall need the following sequence spaces:

$$\begin{split} &\omega = \{x = (x_k) : x \text{ is any sequence } \} \\ &c = \{x = (x_k) \in \omega : x_k \text{ converges, i.e. } \lim_{k \to \infty} x_k \text{ exists } \} \\ &c_0 = \{x = (x_k) \in \omega : \lim_{k \to \infty} x_k = 0\}, \text{ the set of all null sequences} \\ &l_{\infty} = m = \{x = (x_k) \in \omega : ||x||_{\infty} = \sup_{n} |x_k| < \infty\} \\ &l_1 = l = \{x = (x_k) \in \omega : ||x||_1 = \sum_{k=0}^{\infty} |x_k| < \infty\} \\ &l_p = \{x = (x_k) \in \omega : ||x||_p = \sum |x_k|^p < \infty; 1 \le p < \infty\} \\ &\phi = \{x = (x_k) \in \omega : \exists N \in \mathbb{N} \text{ such that } \forall k \ge N, x_k = 0\}, \text{ the set of finitely non-zero sequences} \\ &bs = \{x = (x_k) \in \omega : ||x||_{bs} = \sup_n |\sum_{k=0}^n x_k| < \infty\}, \text{ the set of all sequences with bounded partial sums} \end{split}$$

$$X^{\beta} = \{a = (a_k) \in \omega \colon \sum_{k=0}^{\infty} a_k x_k \in c , \forall x \in X\}$$

Note that $x = (x_k)$ is used throughout for the convention $(x_k) = (x_k)_{k=0}^{\infty}$. We take e = (1, 1, 1, ...) and e^k for the sequence whose only nonzero term is 1 in the *k*th place for each $k \in \mathbb{N}$, where $\mathbb{N} = \{0, 1, 2, 3, ...\}$. Any vector subspace of ω is called a sequence subspace. A sequence space *X* is *FK* if it is a complete linear metric space with continuous coordinates $P_n : X \to \mathbb{C}$, defined by $P_n(x) = x_n \forall x = (x_k) \in X$ with $n \in \mathbb{N}$. A normed *FK* space is *BK*-space or Banach space with continuous coordinates. An *FK* space has *AK*- property if $x^{[m]} \to x$ in *X*, where $x^{[m]} = \sum_{k=0}^{n} x_k e^k$ is the mth section of *x*. If φ is dense in *X* then it has an *AD*- property (see Boos [5]). A matrix domain of a sequence space *X*, is defined as $X_A = \{x = (x_k) \in \omega : Ax \in X\}$.

Let \mathcal{U} be the set of all sequences $u = (u_k)$ with $u_k \neq 0 \forall k \in \mathbb{N}$, and for $u \in \mathcal{U}$ let $\frac{1}{u} = \left(\frac{1}{u_k}\right)$. Then for $u, v \in \mathcal{U}$ define the matrix $G(u, v) = (a_{v_k})$ by

$$g_{nk} = \begin{cases} u_n v_k, & \text{for } 0 \le k \le n, \\ 0, & \text{for } k > n, \end{cases}$$

This matrix is called the generalized weighted mean. The sequence $y = (y_k)$ in the sequence spaces $y'(y_k, y_k) = (y_k) = (y_k) = \sum_{k=1}^{k} (y_k, y_k) = \sum_{k=1}^{k}$

 $\lambda(u, v, \Delta) = \{x = (x_k) \in \omega : y = \sum_{i=0}^k u_k v_i \Delta x_i \in X\}, \ \lambda \in \{l_{\infty}, c, c_0\}$ (1)

is the $G(u, v, \Delta)$ –transform of a given sequence $x = (x_k)$. It is defined by

$$y = \sum_{i=0}^{k} u_k v_i \Delta x_i$$
$$= \sum_{i=0}^{k} u_k \nabla v_i x_i$$

where,

 $\nabla v_i = v_i - v_{i+1}$ and $\Delta x = (\Delta x_i) = x_i - x_{i-1}$,

and taking all negative subscripts to be naught. The spaces (1) were defined in [9]. If X is any normed sequence space the matrix domain $X_{G(u,v,\Delta)}$ is the generalized weighted mean difference sequence space [9]. Our object is to characterize the matrix classes $(c(u,v,\Delta): l_p)$ and $(c(u,v,\Delta): bs)$. However, matrix class characterizations are done with help of β –duals, and so we need the following

Lemma 1.1 [9]: Let $u, v, \in \mathcal{U}, a = (a_k) \in \omega$ and the matrix $D = (d_{nk})$ by $d_{nk} = \begin{cases} \left(\frac{1}{u_n v_k} - \frac{1}{u_n v_{k+1}}\right) a_k; & (0 \le k < n), \\ \frac{1}{u_n v_n} a_n; & (k = n) \\ 0; & (k > n) \end{cases}$ and let d_1, d_2, d_3, d_4 and d_5 be the sets $d_1 = \{a = (a_k) \in \omega : \sup_n \sum_n |\sum_{k \in \mathcal{K}} d_{nk}| < \infty\}; \\ d_2 = \{a = (a_k) \in \omega : \sup_n \sum_n |d_{nk}| < \infty\}; \\ d_3 = \{a = (a_k) \in \omega : \lim_{n \to \infty} d_{nk} \text{ exists for each } n \in \mathbb{N}\} \end{cases}$ Then, $[c_0(u, v, \Delta)]^{\beta} = d_1 \cap d_2 \cap d_3.$

II. Methodology

If A is an infinite matrix with complex entries a_{nk} $(n, k \in \mathbb{N})$, then $A = (a_{nk})$ is used for $A = (a_{nk})_{n,k=0}^{\infty}$ and A_n is the sequence in the nth row of A, or $A_n = (a_{nk})_{k=0}^{\infty}$ for every $n \in \mathbb{N}$. The A- transform of a sequence x is defined as

$$Ax = (A_n(x))_{n=0}^{\infty}$$

= $\lim_{n \to \infty} \sum_{k=0}^{\infty} a_{nk} x_k$

provided the series on the right converges for each *n* and for all $x \in X$. The pair (X, Y) is referred to as a matrix class, so that

 $(n \in \mathbb{N})$

$$A \in (X, Y) \Leftrightarrow \begin{cases} A_n \in X^{\beta} \ \forall n \in \mathbb{N} \\ \text{and} \\ Ax \in Y \ \forall x \in X, \text{ in the norm of } Y \end{cases}$$
(2)

In this paper we shall take $X = c(u, v, \Delta)$ and $Y \in \{l_p, bs\}$. We shall need the following lemma for the proof of Theorems 3.1 and 3.2 as our main results in section 3:

Lemma 2.1 [9]: The sequence spaces $\lambda(u, v, \Delta)$ for $\lambda \in \{l_{\infty}, c, c_0\}$ are complete normed linear spaces with the norm $\|x\|_{\lambda(u,v,\Delta)} = \sup_k |\sum_{i=0}^k u_k \Delta x_i| = \|y\|_{\lambda}$. They are also *BK* spaces with both *AK*- and *AD*- properties. Further, let $y \in c_0$ and define $x = (x_k)$ by

$$x_{k} = \sum_{i=0}^{k-1} \frac{1}{u_{k}} \left(\frac{1}{v_{i}} - \frac{1}{v_{i+1}} \right) y_{i} + \frac{1}{u_{k}v_{k}} y_{k}; \quad k \in \mathbb{N}$$

then $x \in c_0(u, v, \Delta)$.

An infinite matrix A maps a BK space X continuously into the space bs if and only if the sequence the sequence of functional $\{f_n\}$ defined by

 $f_n(x) = \sum_{n=1}^m \sum_{k=1}^\infty a_{nk} x_k, \ n = 1, 2, 3, ...$ is bounded in the dual space of X.

III. Main Results

Theorem 3.1.
$$A \in (c(u, v, \Delta) : l_p)$$
 for $p > 1$, if and only if

(i)
$$\sup_{n} \left| \sum_{k \in \mathcal{K}} \left[\sum_{i=1}^{k-1} \frac{1}{u_k} \left(\frac{1}{v_i} - \frac{1}{v_{i+1}} \right) a_{nk} + \frac{1}{u_k v_k} a_{nk} \right] \right|^p < \infty$$

(*ii*)
$$\lim_{n \to \infty} \left[\sum_{i=1}^{k-1} \frac{1}{u_k} \left(\frac{1}{v_i} - \frac{1}{v_{i+1}} \right) a_{nk} + \frac{1}{u_k v_k} a_{nk} \right] = a_k, \text{ exists}$$

(iii)
$$\lim_{n \to \infty} \sum_{k=0}^{n} \left[\sum_{i=1}^{k-1} \frac{1}{u_k} \left(\frac{1}{v_i} - \frac{1}{v_{i+1}} \right) a_{nk} + \frac{1}{u_k v_k} a_{nk} \right] = a, \ exists$$

Proof: Since $c(u, v, \Delta)$ and l_p are *BK* spaces, we suppose that (i), (ii) and (iii) hold and take $x = (x_k) \in c(u, v, \Delta)$. Then by (2) and Lemma 1.1, $A_n \in [c(u, v, \Delta)]^{\beta}$ for all $n \in \mathbb{N}$, which implies the existence of the *A*-transform of *x*, or *Ax* exists for each *n*. It is also clear that the associated sequence $y = (y_k)$ is in *c* and hence $y \in c_0$. Again, since $c(u, v, \Delta)$ has *AK* (Lemma 2.1) and contains ϕ , by the mth partial sum of the series $\sum_{k=0}^{\infty} a_{nk} x_k$ we have

$$\sum_{k=0}^{m} a_{nk} x_k = \sum_{k=0}^{m} \left[\sum_{i=1}^{k-1} \frac{1}{u_k} \left(\frac{1}{v_i} - \frac{1}{v_{i+1}} \right) + \frac{1}{u_k v_k} \right] a_{nk} y_k,$$

which becomes

$$\sum_{k=0}^{\infty} a_{nk} x_k = \sum_{k=0}^{\infty} \left[\sum_{i=1}^{k-1} \frac{1}{u_k} \left(\frac{1}{v_i} - \frac{1}{v_{i+1}} \right) a_{nk} + \frac{1}{u_k v_k} a_{nk} \right] y_k, \text{ for } p > 1,$$

$$\Rightarrow ||Ax||_{l_p} \le \sup_n \sum_k \left[\sum_{k=0}^{k-1} \left| \frac{1}{u_k} \left(\frac{1}{v_i} - \frac{1}{v_{i+1}} \right) a_{nk} y_k + \frac{1}{u_k v_k} a_{nk} y_k \right|^p \right]^{1/p} \\ \le ||y_k||_{l_p} \sup_n \left(\sum_k \left[\sum_{k=0}^{k-1} \left| \frac{1}{u_k} \left(\frac{1}{v_i} - \frac{1}{v_{i+1}} \right) a_{nk} \right|^p \right]^{1/p} + \left[\sum_{k=0}^{k-1} \left| \frac{a_{nk}}{u_k v_k} \right|^p \right]^{1/p} \right) < \infty$$

 \Rightarrow $Ax \in l_p$ and hence $A \in (c(u, v, \Delta) : l_p)$.

Conversely, let $A \in (c(u, v, \Delta) : l_p)$, $1 . Then again by (2) and Lemma 1.1, <math>A_n \in [c(u, v, \Delta)]^{\beta}$ for all $n \in \mathbb{N}$ implying (ii) and (iii) for all $x \in c(u, v, \Delta)$ and $y \in l_p$. To prove (i), let the continuous linear functional f_n $(n \in \mathbb{N})$ be defined on $(c(u, v, \Delta))^*$, the continuous dual of $c(u, v, \Delta)$. Since the series $\sum_{k=0}^{\infty} a_{nk} x_k$ converges for each x and for each n, then $f_{A_n} \in (c(u, v, \Delta))^*$; where

$$f_{A_n}(x) = \sum_{k=0}^{\infty} a_{nk} x_k \quad \forall x \in c(u, v, \Delta).$$

$$\implies ||f_{A_n}|| = ||A_n||_{l_p} = (\sum_{k=0}^{\infty} |a_{nk}|^p)^{\frac{1}{p}} < \infty, \text{ for all } n \in \mathbb{N},$$

with $A_n \in [c(u, v, \Delta)]^{\beta}$. This means that the functional defined by the rows of A on $c(u, v, \Delta)$ are pointwise bounded, and by the Banach-Steinhaus theorem these functional are uniformly bounded. Hence there exists a constant M > 0, such that $||f_{A_n}|| \le M$, $\forall n \in \mathbb{N}$, yielding (i).

Theorem 3.2: $A \in (c(u, v, \Delta) : bs)$ if and only if conditions (ii) and (iii) of Theorem 3.1 hold, and

(*iv*)
$$\sup_{m} \sum_{k} \sum_{n=1}^{m} \left| \sum_{i=1}^{k-1} \frac{1}{u_{k}} \left(\frac{1}{v_{i}} - \frac{1}{v_{i+1}} \right) a_{nk} + \frac{1}{u_{k}v_{k}} a_{nk} \right| < \infty.$$

Proof. Suppose $A \in (c(u, v, \Delta) : bs)$. Then $A_n \in [c(u, v, \Delta)]^{\beta}$ for all $n \in \mathbb{N}$. Since $e_k = (\delta_{nk})$, where $\delta_{nk} = 1$ (n = k) and = 0 $(n \neq k)$, belongs to $c(u, v, \Delta)$, the necessity of (ii) holds. Similarly by taking $x = e = (1, 1, 1, ...) \in c(u, v, \Delta)$ we get (iii). We prove the necessity of (i) as follows:

Suppose $A \in (c(u, v, \Delta) : bs)$. Then it implies

$$\sum_{n=1}^{m} |A_r(x)| < \infty, m = 1, 2, 3, ...,$$

where,

$$A_{r}(x) = \sum_{k} a_{rk} \left(\sum_{i=0}^{k-1} \left(\frac{y_{k}}{u_{k}} \left(\frac{1}{v_{i}} - \frac{1}{v_{i+1}} \right) + \frac{y_{k}}{u_{k}v_{k}} \right) \right)$$

converges for each *r* whenever $x \in c(u, v, \Delta)$, which follows by the Banach-Steinhaus theorem that $\sup_k |a_{nk}| < \infty$, each *r*. Hence A_r defines an element of $[c(u, v, \Delta)]^*$ for each *r*.

Now define

$$q_m(x) = \sum_{n=1}^m |A_r(x)|, \quad r = 1, 2, 3, \dots$$

 q_m is subadditive. Moreover, A_r is a bounded linear functional on $c(u, v, \Delta)$ implies each q_m is a sequence of continuous seminorms on $c(u, v, \Delta)$ such that

$$sup_m q_m(x) = \sum_{r=1}^{\infty} |A_r(x)| < \infty \text{ for each } x \in c(u, v, \Delta).$$

Thus there exists a constant M > 0 such that

$$\sum_{r=1}^{\infty} |A_r(x)| \le M \|x\|_{c(u,v,\Delta)}$$

which implies (i).

Sufficiency: Suppose (i) – (iii) of the theorem hold. Then $A_n \in [c(u, v, \Delta)]^{\beta}$. If $x \in c(u, v, \Delta)$, it suffices to show that $A_n(x) \in bs$ in the norm of the sequence space bs.

Now,
$$\sum_{k=0}^{n} a_{nk} x_{k} = \sum_{k=0}^{n} \left[\left[\sum_{i=1}^{k-1} \frac{1}{u_{k}} \left(\frac{1}{v_{i}} - \frac{1}{v_{i+1}} \right) + \frac{1}{u_{k} v_{k}} \right] a_{nk} \right] y_{k}$$

$$\leq \sup_{n} \sum_{k=0}^{n} \left[\sum_{i=0}^{k-1} \left(\frac{1}{u_{k}} \left(\frac{1}{v_{i}} - \frac{1}{v_{i+1}} \right) a_{nk} + \frac{a_{nk}}{u_{k} v_{k}} \right) y_{k} \right] \quad \text{by (i)}$$

$$\leq \|y_{k}\| \sup_{n} \sum_{k=0}^{\infty} \left[\sum_{i=1}^{k-1} \frac{1}{u_{k}} \left(\frac{1}{v_{i}} - \frac{1}{v_{i+1}} \right) + \frac{1}{u_{k} v_{k}} \right] a_{nk} < \infty, \text{ as } n \to \infty$$

This implies $A_n(x) \in bs$ or $A \in (c(u, v, \Delta) : bs)$.

Concluding Remarks

The generalization obtained here still admit improvement in the sense that the conditions obtained here may further be simplified resulting in less restrictions on the involved matrices.

References

- [1] Ahmad, Z. U., and Mursaleen, Köthe-Teoplitz Duals of Some New Sequence Spaces and Their Matrix Transformations, Pub. Dé L'institut Mathématique Nouvelle série tome 42 (56), 1987, p. 57-61
- [2] Altay, B., and F. Başar, Some Paranormed Sequence Spaces of Non-absolute Type Derived by Weighted Mean, J. math. Anal. Appl. 319, (2006), p. 494-508
- [3] Altay B., and F. Başar, The Fine Spectrum and the Matrix Domain of the Difference Operator Δ on the Sequence Space l_p , 0),*Comm. Math. Anal. Vol. 2 (2), 2007, p. 1-11*
- [4] Başarir, M., and E. E. Kara, On Some Difference Sequence Spaces of Weighted Means and Compact Operators, *Ann. Funct. Anal.* 2, 2011, p. 114-129
- [5] Boos, J., *Classical and Modern Methods in Summability*, Oxford Sci. Pub., Oxford, 2000
- [6] Kizmaz, H., On Certain Sequence Spaces, Canad. Math. Bull. Vol. 24 (2), 1981, p. 169-176
- [7] Maddox, I. J., Spaces of Strongly Summable Sequences, Quart. J. Math. Oxford, 18 (2), 1967, p. 345-355
- [8] Polat, H., and F. Başar, Some Euler Spaces of Difference Sequences of Order m*, Acta Mathematica Scienta, 2007, 27B (2), p. 254-266
- [9] Polat, H., Vatan K. and Necip S., Difference Sequence Spaces Derived by Generalized Weighted Mean, *App. Math. Lett.* 24 (5), 2011, p. 608-614
- [10] Simons, S., The Sequences Spaces, l(pv) and m(pv), Proc. London Math. Soc. 15 (3), 1965, p. 422-436