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Abstract: The sequence spaces 𝑙∞(𝑢, 𝑣, ∆), 𝑐0(𝑢, 𝑣, ∆) and 𝑐(𝑢, 𝑣, ∆) were recently introduced. The matrix 

classes (𝑐 𝑢, 𝑣, ∆ : 𝑐) and (𝑐 𝑢, 𝑣, ∆ : 𝑙∞) were characterized. The object of this paper is to further determine 

the necessary and sufficient conditions on an infinite matrix to characterize the matrix classes (𝑐 𝑢, 𝑣, ∆ ∶ 𝑏𝑠) 

and (𝑐 𝑢, 𝑣, ∆ ∶  𝑙𝑝). It is observed that the later characterizations are additions to the existing ones.  
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I. Introduction 
The sequence spaces 𝑙∞(∆), 𝑐0(∆) and 𝑐(∆) were first introduced by Kizmaz [6] in 1981. Similar to the 

sequence spaces 𝑙∞(𝑝), 𝑐0(𝑝) and 𝑐(𝑝) for 𝑝𝑘 > 1 of Maddox [7] and Simons [10], the ∆- sequence spaces 

above were extended to ∆𝑙∞(𝑝), ∆𝑐0(𝑝) and ∆𝑐(𝑝) by Ahmad and Mursaleen [1] in … The concept of 

difference operators has been discussed and used by Polat and Başar [8] and by Altay and Başar [2], both in 

2007.   

The idea of generalized weighted mean was applied by Altay and Başar [3], in 2006. This concept 

depends on the idea of 𝐺 𝑢, 𝑣 - transforms which has been used by Polat, et al [10] and by Basarir and Kara [4]. 

We shall need the following sequence spaces: 

           𝜔 = {𝑥 =  𝑥𝑘 ∶ x is any sequence } 

            𝑐 = {𝑥 =  𝑥𝑘 ∈ 𝜔: 𝑥𝑘  converges, i.e. lim𝑘→∞ 𝑥𝑘  exists }                                         

           𝑐0 =  𝑥 =  𝑥𝑘 ∈ 𝜔: limk→∞ 𝑥𝑘 = 0 , the set of all null sequences 

           𝑙∞ = 𝑚 =  𝑥 =  𝑥𝑘 ∈ 𝜔:  𝑥 ∞ = 𝑠𝑢𝑝𝑛  𝑥𝑘  < ∞  
            𝑙1 = 𝑙 =  𝑥 =  𝑥𝑘 ∈ 𝜔:  𝑥 1 =   𝑥𝑘  < ∞∞

𝑘=0    

           𝑙𝑝 =  𝑥 =  𝑥𝑘 ∈ 𝜔:  𝑥 𝑝 =   𝑥𝑘  𝑝 < ∞;  1 ≤ 𝑝 < ∞   

           𝜙 = {𝑥 =  𝑥𝑘 ∈ 𝜔: ∃ 𝑁 ∈ ℕ such that ∀ 𝑘 ≥ 𝑁, 𝑥𝑘 = 0}, the set of finitely non-         zero sequences 

           𝑏𝑠 =  𝑥 =  𝑥𝑘 ∈ 𝜔:  𝑥 𝑏𝑠 = 𝑠𝑢𝑝𝑛   𝑥𝑘
𝑛
𝑘=0  < ∞ , the set of all sequences with  bounded partial sums  

         

          𝑋𝛽 = {𝑎 =  𝑎𝑘 ∈ 𝜔:  𝑎𝑘𝑥𝑘 ∈ 𝑐∞
𝑘=0 , ∀ 𝑥 ∈ 𝑋}  

Note that 𝑥 = (𝑥𝑘 ) is used throughout for the convention (𝑥𝑘 ) = (𝑥𝑘 )𝑘=0
∞  . We take 𝑒 = (1, 1, 1, … ) and 𝑒𝑘  for 

the sequence whose only nonzero term is 1 in the 𝑘th place for each 𝑘 ∈ ℕ, where ℕ = {0, 1, 2, 3, … }.  Any 

vector subspace of 𝜔 is called a sequence subspace. A sequence space 𝑋 is FK if it is a complete linear metric 

space with continuous coordinates 𝑃𝑛 ∶ 𝑋 → ℂ, defined by 𝑃𝑛  𝑥 = 𝑥𝑛  ∀ 𝑥 = (𝑥𝑘 ) ∈ 𝑋 with 𝑛 ∈ ℕ. A normed 

FK space is BK-space or Banach space with continuous coordinates. An FK space has AK- property if 𝑥[𝑚] → 𝑥 

in 𝑋, where 𝑥[𝑚 ] =  𝑥𝑘𝑒𝑘𝑛
𝑘=0  is the mth

- section of 𝑥. If 𝜑 is dense in 𝑋 then it has an AD- property (see Boos 

[5]). A matrix domain of a sequence space 𝑋, is defined as 𝑋𝐴 =   𝑥 = (𝑥𝑘 ∈ 𝜔 ∶ 𝐴𝑥 ∈ 𝑋 }. 

                  Let 𝒰 be the set of all sequences 𝑢 = (𝑢𝑘 ) with 𝑢𝑘 ≠ 0 ∀ 𝑘 ∈ ℕ, and for 𝑢 ∈ 𝒰 let 
1

𝑢
=  

1

𝑢𝑘
 . Then 

for 𝑢, 𝑣 ∈ 𝒰 define the matrix 𝐺 𝑢, 𝑣 = (𝑔𝑛𝑘 ) by   

                      𝑔𝑛𝑘 =  
𝑢𝑛𝑣𝑘 ,    for   0 ≤ 𝑘 ≤ 𝑛,                            
0,         for    𝑘 > 𝑛      ∀ 𝑘, 𝑛 ∈ ℕ            

     

This matrix is called the generalized weighted mean. The sequence 𝑦 = (𝑦𝑘) in the sequence spaces 

        𝜆 𝑢, 𝑣, Δ = {𝑥 = (𝑥𝑘 ) ∈ 𝜔 ∶ 𝑦 =  𝑢𝑘𝑣𝑖∆𝑥𝑖 ∈ 𝑋},𝑘
𝑖=0   𝜆 ∈ {𝑙∞, 𝑐, 𝑐0}                         (1)

  

 is the 𝐺 𝑢, 𝑣, ∆ −transform of a given sequence 𝑥 = (𝑥𝑘 ). It is defined by  

          𝑦 =  𝑢𝑘𝑣𝑖∆𝑥𝑖
𝑘
𝑖=0         

             =  𝑢𝑘∇𝑣𝑖𝑥𝑖
𝑘
𝑖=0                                  

where,                             

                    ∇𝑣𝑖 = 𝑣𝑖 − 𝑣𝑖+1 and ∆𝑥 =  ∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1,   

and taking all negative subscripts to be naught. The spaces (1) were defined in [9]. If 𝑋 is any normed sequence 

space the matrix domain 𝑋𝐺(𝑢 ,𝑣,∆) is the generalized weighted mean difference sequence space [9]. Our object is 

to characterize the matrix classes  𝑐 𝑢, 𝑣, ∆ ∶  𝑙𝑝  and (𝑐 𝑢, 𝑣, ∆ ∶ 𝑏𝑠). However, matrix class characterizations 

are done with help of 𝛽 −duals, and so we need the following   
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Lemma 1.1 [9]: Let 𝑢, 𝑣, ∈ 𝒰, 𝑎 =  𝑎𝑘 ∈ 𝜔 and the matrix 𝐷 = (𝑑𝑛𝑘 ) by                     

                          𝑑𝑛𝑘 =

 
 
 

 
  

1

𝑢𝑛 𝑣𝑘
−

1

𝑢𝑛 𝑣𝑘+1
 𝑎𝑘 ;     0 ≤ 𝑘 < 𝑛 ,

1

𝑢𝑛 𝑣𝑛
𝑎𝑛 ;       𝑘 = 𝑛                       

0;          𝑘 > 𝑛                            

          

and let 𝑑1, 𝑑2, 𝑑3, 𝑑4  and 𝑑5 be the sets      

                           𝑑1 = {𝑎 =  𝑎𝑘 ∈ 𝜔 ∶  𝑠𝑢𝑝𝑛    𝑑𝑛𝑘𝑘∈𝒦  < ∞};𝑛   

                           𝑑2 = {𝑎 =  𝑎𝑘 ∈ 𝜔 ∶  𝑠𝑢𝑝𝑛   𝑑𝑛𝑘  < ∞};𝑛           

                           𝑑3 = {𝑎 =  𝑎𝑘 ∈ 𝜔 ∶  𝑙𝑖𝑚𝑛→∞𝑑𝑛𝑘  exists for each 𝑛 ∈ ℕ}        

  Then, [𝑐0 𝑢, 𝑣, ∆ ]𝛽 =  𝑑1 ∩ 𝑑2 ∩ 𝑑3. 
               

II. Methodology 
If A is an infinite matrix with complex entries 𝑎𝑛𝑘  (𝑛, 𝑘 ∈ ℕ), then 𝐴 = (𝑎𝑛𝑘 ) is used for 𝐴 =

(𝑎𝑛𝑘 )𝑛 ,𝑘=0
∞  and 𝐴𝑛  is the sequence in the nth row of A, or 𝐴𝑛 = (𝑎𝑛𝑘 )𝑘=0

∞  for every 𝑛 ∈ ℕ. The A- transform of a 

sequence x is defined as         

          𝐴𝑥 = (𝐴𝑛(𝑥))𝑛=0
∞                                     

                = lim𝑛→∞  𝑎𝑛𝑘 𝑥𝑘
∞
𝑘=0      (𝑛 ∈ ℕ)                 

provided the series on the right converges for each n and for all 𝑥 ∈ 𝑋. The pair (𝑋, 𝑌) is referred to as a matrix 

class, so that  

      

 𝐴 ∈ (𝑋, 𝑌) ⟺  
𝐴𝑛 ∈ 𝑋𝛽   ∀ 𝑛 ∈ ℕ                                
and                                                        

𝐴𝑥 ∈ 𝑌  ∀ 𝑥 ∈ 𝑋,   in the norm of  𝑌

                                                         (2) 

In this paper we shall take 𝑋 = 𝑐(𝑢, 𝑣, ∆) and 𝑌 ∈  𝑙𝑝 , 𝑏𝑠  . We shall need the following lemma for the proof of 

Theorems 3.1 and 3.2 as our main results in section 3:      

      

Lemma 2.1 [9]: The sequence spaces 𝜆 𝑢, 𝑣, Δ  for 𝜆 ∈ {𝑙∞, 𝑐, 𝑐0} are complete normed linear spaces with the 

norm  𝑥 𝜆 𝑢 ,𝑣,Δ = sup𝑘   𝑢𝑘∆𝑥𝑖
𝑘
𝑖=0  =  𝑦 𝜆. They are also BK spaces with both AK- and AD- properties. 

Further, let 𝑦 ∈ 𝑐0 and define  𝑥 =  𝑥𝑘  by                                                                 

                     𝑥𝑘 =  
1

𝑢𝑘
 

1

𝑣𝑖
−

1

𝑣𝑖+1
 𝑦𝑖 +

1

𝑢𝑘𝑣𝑘
𝑦𝑘 ;    𝑘 ∈ ℕ𝑘−1

𝑖=0             

then 𝑥 ∈ 𝑐0 𝑢, 𝑣, ∆ .                   

 

 An infinite matrix A maps a BK space 𝑋 continuously into the space 𝑏𝑠 if and only if the sequence the 

sequence of functional {𝑓𝑛 } defined by 

                𝑓𝑛  𝑥 =   𝑎𝑛𝑘 𝑥𝑘 ,   𝑛 = 1, 2, 3, …∞
𝑘=1

𝑚
𝑛=1                           

is bounded in the dual space of 𝑋.  

 

III. Main Results 

Theorem 3.1. 𝐴 ∈  𝑐 𝑢, 𝑣, ∆ ∶ 𝑙𝑝   for 𝑝 > 1, if and only if  

(i)         𝑠𝑢𝑝𝑛     
1

𝑢𝑘
 

1

𝑣𝑖
−

1

𝑣𝑖+1
 𝑎𝑛𝑘 +

1

𝑢𝑘𝑣𝑘
𝑎𝑛𝑘

𝑘−1
𝑖=1  𝑘∈𝒦  

𝑝

< ∞,              

(ii)        𝑙𝑖𝑚𝑛→∞   
1

𝑢𝑘
 

1

𝑣𝑖
−

1

𝑣𝑖+1
 𝑎𝑛𝑘 +

1

𝑢𝑘𝑣𝑘
𝑎𝑛𝑘

𝑘−1
𝑖=1  = 𝑎𝑘 , exists  

(iii)      𝑙𝑖𝑚𝑛→∞    
1

𝑢𝑘
 

1

𝑣𝑖
−

1

𝑣𝑖+1
 𝑎𝑛𝑘 +

1

𝑢𝑘𝑣𝑘
𝑎𝑛𝑘

𝑘−1
𝑖=1  = 𝑎𝑛

𝑘=0 , exists 

               

Proof: Since 𝑐 𝑢, 𝑣, ∆  and 𝑙𝑝  are BK spaces, we suppose that (i), (ii) and (iii) hold and take 𝑥 = (𝑥𝑘 ) ∈

𝑐 𝑢, 𝑣, ∆ . Then by (2) and Lemma 1.1, 𝐴𝑛 ∈ [𝑐 𝑢, 𝑣, ∆ ]𝛽  for all 𝑛 ∈ ℕ, which implies the existence of the A- 

transform of 𝑥, or 𝐴𝑥 exists for each 𝑛. It is also clear that the associated sequence 𝑦 = (𝑦𝑘) is in 𝑐 and hence 

𝑦 ∈ 𝑐0. Again, since 𝑐 𝑢, 𝑣, ∆  has AK (Lemma 2.1) and contains 𝜙, by the mth partial sum of the series 
 𝑎𝑛𝑘 𝑥𝑘

∞
𝑘=0  we have   

                                 

                𝑎𝑛𝑘 𝑥𝑘 =    
1

𝑢𝑘
 

1

𝑣𝑖
−

1

𝑣𝑖+1
 +

1

𝑢𝑘𝑣𝑘

𝑘−1
𝑖=1  𝑎𝑛𝑘 𝑦𝑘 ,𝑚

𝑘=0
𝑚
𝑘=0    

which becomes  
 

                𝑎𝑛𝑘 𝑥𝑘 =    
1

𝑢𝑘
 

1

𝑣𝑖
−

1

𝑣𝑖+1
 𝑎𝑛𝑘 +

1

𝑢𝑘𝑣𝑘
𝑎𝑛𝑘

𝑘−1
𝑖=1  𝑦𝑘 ,∞

𝑘=0
∞
𝑘=0  for 𝑝 > 1,   
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              ⟹   𝐴𝑥 𝑙𝑝
≤ sup𝑛     

1

𝑢𝑘
 

1

𝑣𝑖
−

1

𝑣𝑖+1
 𝑎𝑛𝑘 𝑦𝑘 +

1

𝑢𝑘𝑣𝑘
𝑎𝑛𝑘 𝑦𝑘 

𝑝
𝑘−1
𝑘=0  

1/𝑝

𝑘                          

                              

                              ≤  𝑦𝑘 𝑙𝑝
𝑠𝑢𝑝𝑛      

1

𝑢𝑘
 

1

𝑣𝑖
−

1

𝑣𝑖+1
 𝑎𝑛𝑘  

𝑝
𝑘−1
𝑘=0  

1/𝑝

+    
𝑎𝑛𝑘

𝑢𝑘𝑣𝑘
 
𝑝

𝑘−1
𝑘=0  

1/𝑝

𝑘  < ∞         

                

              ⟹  𝐴𝑥 ∈ 𝑙𝑝  and hence 𝐴 ∈  𝑐 𝑢, 𝑣, ∆ ∶ 𝑙𝑝 .          

 

Conversely, let 𝐴 ∈  𝑐 𝑢, 𝑣, ∆ ∶ 𝑙𝑝 , 1 < 𝑝 < ∞. Then again by (2) and Lemma 1.1, 𝐴𝑛 ∈ [𝑐 𝑢, 𝑣, ∆ ]𝛽  for all 

𝑛 ∈ ℕ implying (ii) and (iii) for all 𝑥 ∈ 𝑐 𝑢, 𝑣, ∆  and 𝑦 ∈ 𝑙𝑝 . To prove (i), let the continuous linear functional 

𝑓𝑛  (𝑛 ∈ ℕ) be defined on (𝑐 𝑢, 𝑣, ∆ )∗, the continuous dual of 𝑐 𝑢, 𝑣, ∆ . Since the series  𝑎𝑛𝑘 𝑥𝑘
∞
𝑘=0  converges 

for each 𝑥 and for each 𝑛, then 𝑓𝐴𝑛
∈ (𝑐 𝑢, 𝑣, ∆ )∗; where       

 𝑓𝐴𝑛
 𝑥 =  𝑎𝑛𝑘 𝑥𝑘

∞
𝑘=0  ∀ 𝑥 ∈ 𝑐 𝑢, 𝑣, ∆ .     

 

              ⟹     𝑓𝐴𝑛
 =  𝐴𝑛 𝑙𝑝

=    𝑎𝑛𝑘  𝑝∞
𝑘=0  

1

𝑝 < ∞, for all 𝑛 ∈ ℕ, 

 

with 𝐴𝑛 ∈ [𝑐 𝑢, 𝑣, ∆ ]𝛽 . This means that the functional defined by the rows of A on 𝑐 𝑢, 𝑣, ∆  are pointwise 
bounded, and by the Banach-Steinhaus theorem these functional are uniformly bounded. Hence there exists a 

constant 𝑀 > 0, such that  𝑓𝐴𝑛
 ≤ 𝑀, ∀ 𝑛 ∈ ℕ, yielding (i).                                                                                                                

 

Theorem 3.2: 𝐴 ∈  𝑐 𝑢, 𝑣, ∆ ∶ 𝑏𝑠  if and only if conditions (ii) and (iii) of Theorem 3.1 hold, and 

 

(iv)         𝑠𝑢𝑝𝑚     
1

𝑢𝑘
 

1

𝑣𝑖
−

1

𝑣𝑖+1
 𝑎𝑛𝑘 +

1

𝑢𝑘𝑣𝑘
𝑎𝑛𝑘

𝑘−1
𝑖=1  < ∞𝑚

𝑛=1𝑘 . 

 

Proof. Suppose𝐴 ∈  𝑐 𝑢, 𝑣, ∆ ∶ 𝑏𝑠 . Then 𝐴𝑛 ∈ [𝑐 𝑢, 𝑣, ∆ ]𝛽  for all 𝑛 ∈ ℕ. Since 𝑒𝑘 =  𝛿𝑛𝑘  , where 𝛿𝑛𝑘 = 1 

(𝑛 = 𝑘) and = 0 (𝑛 ≠ 𝑘), belongs to 𝑐 𝑢, 𝑣, ∆ , the necessity of (ii) holds. Similarly by taking 𝑥 = 𝑒 =
(1, 1, 1, … ) ∈ 𝑐 𝑢, 𝑣, ∆  we get (iii). We prove the necessity of (i) as follows:      

Suppose 𝐴 ∈  𝑐 𝑢, 𝑣, ∆ ∶ 𝑏𝑠 . Then it implies 

 

   𝐴𝑟(𝑥) < ∞𝑚
𝑛=1 , 𝑚 = 1, 2, 3, …,   

   

where,         

                     𝐴𝑟 𝑥 =  𝑎𝑟𝑘𝑘 (  
𝑦𝑘

𝑢𝑘
 

1

𝑣𝑖
−

1

𝑣𝑖+1
 +

𝑦𝑘

𝑢𝑘𝑣𝑘
 )𝑘−1

𝑖=0   

 

converges for each 𝑟 whenever 𝑥 ∈ 𝑐 𝑢, 𝑣, ∆ , which follows by the Banach-Steinhaus theorem that 

𝑠𝑢𝑝𝑘  𝑎𝑛𝑘  < ∞, each 𝑟. Hence 𝐴𝑟  defines an element of [𝑐 𝑢, 𝑣, ∆ ]∗ for each 𝑟.     

     

         Now define  

 

                     𝑞𝑚  𝑥 =   𝐴𝑟(𝑥) ,      𝑟 = 1,2,3, …𝑚
𝑛=1   

  

𝑞𝑚  is subadditive. Moreover, 𝐴𝑟  is a bounded linear functional on 𝑐 𝑢, 𝑣, ∆  implies each 𝑞𝑚  is a sequence of 

continuous seminorms on 𝑐 𝑢, 𝑣, ∆  such that      

                        𝑠𝑢𝑝𝑚 𝑞𝑚  𝑥 =   𝐴𝑟(𝑥) < ∞∞
𝑟=1  for each 𝑥 ∈ 𝑐 𝑢, 𝑣, ∆ . 

 

Thus there exists a constant 𝑀 > 0 such that        
  

     𝐴𝑟(𝑥) ≤ 𝑀 𝑥 𝑐 𝑢 ,𝑣 ,∆ 
∞
𝑟=1                                               

which implies (i). 

     

 Sufficiency: Suppose (i) – (iii) of the theorem hold. Then 𝐴𝑛 ∈ [𝑐 𝑢, 𝑣, ∆ ]𝛽 . If 𝑥 ∈ 𝑐 𝑢, 𝑣, ∆ , it 

suffices to show that 𝐴𝑛 (𝑥) ∈ 𝑏𝑠 in the norm of the sequence space 𝑏𝑠. 

Now,       𝑎𝑛𝑘 𝑥𝑘 =     
1

𝑢𝑘
 

1

𝑣𝑖
−

1

𝑣𝑖+1
 +

1

𝑢𝑘𝑣𝑘

𝑘−1
𝑖=1  𝑎𝑛𝑘  𝑦𝑘

𝑛
𝑘=0

𝑛
𝑘=0                                    
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                ≤ 𝑠𝑢𝑝𝑛     
1

𝑢𝑘
 

1

𝑣𝑖
−

1

𝑣𝑖+1
 𝑎𝑛𝑘 +

𝑎𝑛𝑘

𝑢𝑘𝑣𝑘
 𝑦𝑘

𝑘−1
𝑖=0  𝑛

𝑘=0     by (i)             

             

                ≤  𝑦𝑘 𝑠𝑢𝑝𝑛    
1

𝑢𝑘
 

1

𝑣𝑖
−

1

𝑣𝑖+1
 +

1

𝑢𝑘𝑣𝑘

𝑘−1
𝑖=1  𝑎𝑛𝑘 < ∞∞

𝑘=0 , as 𝑛 → ∞.   

 

This implies 𝐴𝑛(𝑥) ∈ 𝑏𝑠 or 𝐴 ∈  𝑐 𝑢, 𝑣, ∆ ∶ 𝑏𝑠 .                □ 

 

Concluding Remarks 

The generalization obtained here still admit improvement in the sense that the conditions obtained here 

may further be simplified resulting in less restrictions on the involved matrices. 
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