Jordan Higher (σ, τ)-Centralizer on Prime Ring

Salah M.Salih, Marwa M.Shaapan
Department of Mathematics, College of Education, Al-Mustansiriya University.

Abstract

Let R be a ring and σ, τ be an endomorphisms of R, in this paper we will present and study the concepts of higher (σ, τ)-centralizer, Jordan higher (σ, τ)-centralizer and Jordan triple higher (σ, τ) centralizer and their generalization on the ring. The main results are prove that every Jordan higher (σ, τ) centralizer of prime ring R is higher (σ, τ)-centralizer of R and we prove let R be a 2 -torsion free ring, σ and τ are commutative endomorphism then every Jordan higher (σ, τ)-centralizer is Jordan triple higher (σ, τ) centralizer.

Mathematics Subject Classification: 16A12,16N60,16W25,16Y99.
Keywords: higher (σ, τ)-centralizer, Jordan higher (σ, τ)-cenralizer, Jordan triple higher (σ, τ)-centralizr

I. Introcation

Throughout this paper, R is a ring and R is called prime if $a R b=(0)$ implies $a=0$ or $b=0$ and R is semiprime if $a R a=(0)$ implies $a=0$. A mapping $d: R \rightarrow R$ is called derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \epsilon R$. A left(right) centralizer of R is an additive mapping $T: R \rightarrow R$ which satisfies $T(x y)=$ $T(x) y(T(x y)=x T(y)$ for all $x, y \in R$.

In [6] B.Zalar worked on centralizer of semiprime rings and defined that let R be a semiprimering. A left (right) centralizer of R is an additive mapping $T: R \rightarrow R$ satisfying $T(x y)=T(x) y(T(x y)=x T(y))$ for all $x, y \in R$. If T is a left and a right centralizer then T is a centralizer. An additive mapping $T: R \rightarrow R$ is called a Jordan centralizer if T satisfies $T(x y+y x)=T(x) y+y T(x)=T(y) x+x T(y)$ for all $x, y \in R$. A left (right) Jordan centralizer of R is an additive mapping $T: R \rightarrow R$ such that $T\left(x^{2}\right)=T(x) x\left(T\left(x^{2}\right)=x T(x)\right)$ for all $x \in R$.
Joso Vakman [3,4,5] developed some Remarks able results using centralizers on prime and semiprime rings.
E.Albas [1] developed some remarks able results using τ-centralizer of semiprime rings.
W.Cortes and G.Haetinger [2] defined a left(resp.right) Jordan σ-centralizer and proved any left(resp.right) Jordan σ-centralizer of 2-torsion free ring is a left(resp.right) σ-centralizer.
In this paper, we present the concept of higher (σ, τ)-centralizer, Jordan higher (σ, τ)-centralizer and Jordan triple higher (σ, τ)-centralizer and We have also prove that every Jordan higher (σ, τ)-centralizer of prime ring is higher (σ, τ)-centralizer Also prove that every Jordan higher (σ, τ)-centralizer of 2-torsion free ring is Jordan triple higher (σ, τ)-centralizer.

II. Higher(σ, τ)-Centralizer

Now we will the definition of higher (σ, τ)-centralizer, Jordan higher (σ, τ)-centralizer and Jordan triple higher (σ, τ)-centralizer on the ring R and other concepts which be used in our work.
We start work with the following definition:-

Definition (2.1):

let R be a ring, σ and τ are endomorphism of R and $T=\left(t_{i}\right)_{i \in N}$ be a family of additive mappings of R then T is said to be higher (σ, τ) - centralizer of R if
$t_{n}(x y+z x)=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y)+\tau^{i}(z) t_{i}(x)$
for all $x, y, z \in R$ and $n \in N$
the following is an example of higher (σ, τ)-centralizer .

Example (2.2):

Let $R=\left\{\left(\begin{array}{cc}x & o \\ 0 & x\end{array}\right): x \in I\right\}$ be a ring, σ and τ are endomorphism of R such that
$\sigma^{i}\left(\begin{array}{ll}x & o \\ o & x\end{array}\right)=\left(\begin{array}{ll}\frac{x}{i} & o \\ o & o\end{array}\right)$ and $\tau^{i}\left(\begin{array}{ll}x & o \\ o & x\end{array}\right)=\left(\begin{array}{ll}\frac{x}{i} & o \\ 0 & o\end{array}\right)$
we use the usual addition and multiplication on matrices of R, and let
$t_{n}: R \rightarrow R$ be additive mapping defined by
$t_{n}\left(\begin{array}{ll}x & o \\ o & x\end{array}\right)=\left(\begin{array}{cc}n x & 0 \\ 0 & 0\end{array}\right)$ if $\left(\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right) \in R$ and $n \geq 1$.
it is clear that $T=\left(t_{i}\right)_{i \in N}$ is higher (σ, τ)-centralizer

Definition (2.3):

Let R be a ring, σ and τ are endomorphism of R and $T=\left(t_{i}\right)_{i \in N}$ be a family of additive mappings of R then T is said to be Jordan higher (σ, τ)-centralizer of R if for every $x, y \in R$ and $n \in N$

$$
t_{n}(x y+y x)=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y)+\tau^{i}(y) t_{i}(x)
$$

It is clear that every higher (σ, τ)-centralizer of a ring R is Jordan higher (σ, τ)-centralizer of R, but the converse is not true in general as shown by the following example .

Example (2.4):

Let R be a ring, $t=\left(t_{i}\right)_{i \in N}$ be a higher (σ, τ)-centralizer and σ, τ are endomorphism of R define $R_{1}=$ $\{(x, x): x \in R\}, \sigma_{1}$ and τ_{1} are endomorphism of R_{1} defined by $\sigma_{1}^{i}(x, x)=\left(\sigma_{i}(x), \sigma_{i}(x)\right)$ and $\tau_{1}^{i}(x, x)=$ $\left(\tau_{i}(x), \tau_{i}(x)\right)$ such that $x_{1} x_{2} \neq x_{2} x_{1}$ but $x_{1} x_{3}=x_{3} x_{1}$ for all $x_{1} x_{2} x_{3} \in R$. Let the operation of addition and multiplication on R defined by
$\left(x_{1}, x_{1}\right)+\left(x_{2}, x_{2}\right)=\left(x_{1}+x_{2}, x_{1}+x_{2}\right)$
$\left(x_{1}, x_{1}\right)\left(x_{2}, x_{2}\right)=\left(x_{1} x_{2}, x_{1} x_{2}\right)$, for every $x_{1}, x_{2} \in R$. let $t_{n}: R \rightarrow R$ be a higher (σ, τ)-centralizer mapping, and let $T_{n}: R_{1} \rightarrow R_{1}$ be a higher (σ, τ)-centralizer mapping defined as $T_{n}(x, x)=\left(t_{n}(x), t_{n}(x)\right)$ for $n \epsilon N$. then T_{n} is a Jordan higher $\left(\sigma_{1}, \tau_{1}\right)$-centralizer which is not higher $\left(\sigma_{1}, \tau_{1}\right)$-centralizer of R_{1}.

Definition (2.5):

let R be a ring, σ and τ be endomorphism of R and $T=\left(t_{i}\right)_{i \in N}$ be a family of additive mappings of R then T is said to be a Jordan triple higher (σ, τ)-centralizer of R if for every $x, y \in R$ and $n \in N$

$$
t_{n}(x y x)=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y) \tau_{i}(x)
$$

Now, we give some properties of higher (σ, τ)-centralizer of R.

lemma (2.6):

Let R be a ring, σ and τ are endomorphism of R and $T=\left(t_{i}\right)_{i \in N}$ be higher (σ, τ)-centralizer of R then for all $x, y, z, m, w \in R$ and N, the following statements holds

$$
\text { (i) } t_{n}(x y+z w)=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y)+\tau^{i}(z) t_{i}(w)
$$

(ii) In particular $\sigma(R)$ is commutative

$$
t_{n}(x y x+x y x)=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y) \tau^{i}(x)+\tau^{i}(x) \sigma^{i}(y) t_{i}(x)
$$

(iii) In particular $t_{i}(z) \sigma^{i}(y) \tau^{i}(x)=\tau^{i}(z) \sigma^{i}(y) t_{i}(x)$

$$
t_{n}(x y z+z y x)=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y) \tau^{i}(z)+\tau^{i}(z) \sigma^{i}(y) t_{i}(x)
$$

(iv) In particular $\sigma(R)$ is commutative

$$
t_{n}(x y m+z w x)=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y) \tau^{i}(m)+\tau^{i}(z) \sigma^{i}(w) t_{i}(x)
$$

Proof:
(i) Replace $x+w$ for x and $y+m$ for y and $z+m$ for z in definition (2.1) we get

$$
\begin{align*}
& t_{n}((x+w)(y+m)+(z+m)(x+w)) \\
& =\sum_{i=1}^{n} t_{i}(x+w) \sigma^{i}(y+m)+\tau^{i}(z+m) t_{i}(x+w) \\
& =\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y)+t_{i}(x) \sigma^{i}(m)+t_{i}(w) \sigma^{i}(y)+t_{i}(w) \sigma^{i}(m)+ \\
& \quad \tau^{i}(z) t_{i}(x)+\tau^{i}(z) t_{i}(w)+\tau^{i}(m) t_{i}(x)+\tau^{i}(m) t_{i}(w) \tag{1}
\end{align*}
$$

On the other hand

```
\(t_{n}((x+w)(y+m)+(z+m)(x+w))\)
\(=t_{n}(x y+x m+w y+w m+z x+z w+m x+m w)\)
\(=t_{n}(x y+z x)+t_{n}(w y+m w)+t_{n}(w m+m x)+t_{n}(x y+z w)\)
\(=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y)+\tau^{i}(z) t_{i}(x)+t_{i}(w) \sigma^{i}(y)+\tau^{i}(m) t_{i}(x)+\)
    \(t_{i}(w) \sigma^{i}(m)+\tau^{i}(m) t_{i}(x)+t_{n}(x y+z w)\)
```

Comparing (1) and (2) we get

$$
\begin{equation*}
t_{n}(x y+z w)=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y)+\tau^{i}(z) t_{i}(w) \tag{2}
\end{equation*}
$$

(ii) Replace $x y+y x$ for y in definition (2.3) we get

$$
\begin{align*}
& t_{n}(x(x y+y x)+(x y+y x) x) \\
& =t_{n}(x x y+x y x+x y x+y x x) \\
& =t_{n}(x x y+y x x)+t_{n}(x y x+x y x) \\
& =t_{n}(x(x y)+y(x x))+t_{n}(x y x+x y x) \\
& =\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(x y)+\tau^{i}(y) t_{i}(x x)+t_{n}(x y x+x y x) \\
& =\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(x) \sigma^{i}(y)+\tau^{i}(y) \sigma^{i}(x) t_{i}(x)+t_{n}(x y x+x y x) \tag{1}
\end{align*}
$$

On the other hand

$$
\begin{align*}
& t_{n}(x(x y+y x)+(x y+y x) x) \\
& =t_{n}(x x y+x y x+x y x+y x x) \\
& =t_{n}(x y x+y x x)+t_{n}(x x y+x y x) \\
& =t_{n}(x(y x)+y(x x))+t_{n}((x x) y+x(y x)) \\
& =\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y x)+\tau^{i}(y) t_{i}(x x)+\sum_{i=1}^{n} t_{i}(x x) \sigma^{i}(y)+\tau^{i}(x) t_{i}(y x) \\
& =\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y) \sigma^{i}(x)+\tau^{i}(y) \sigma^{i}(x) t_{i}(x)+\sum_{i=1}^{n} t_{i}(x) \tau^{i}(x) \sigma^{i}(y)+ \\
& \quad \tau^{i}(x) \sigma^{i}(y) t_{i}(x) \tag{2}
\end{align*}
$$

Comparing (1) and (2) we get

$$
t_{n}(x y x+x y x)=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y) \tau^{i}(x)+\tau^{i}(x) \sigma^{i}(y) t_{i}(x)
$$

(iii) Replace $x+z$ for x in definition (2.5) we get

$$
\begin{align*}
t_{n}((x+z) y(x+z))= & \sum_{i=1}^{n} t_{i}(x+z) \sigma^{i}(y) t_{i}(x+z) \\
= & \sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y) \tau^{i}(x)+t_{i}(x) \sigma^{i}(y) \tau^{i}(z)+ \\
& t_{i}(z) \sigma^{i}(y) \tau^{i}(x)+t_{i}(z) \sigma^{i}(y) \tau^{i}(z) \tag{1}
\end{align*}
$$

On the other hand

$$
\begin{align*}
t_{n}((x+z) y(x+z)) & =t_{n}(x y x+x y z+z y x+z y z) \\
& =t_{n}(x y x)+t_{n}(z y z)+t_{n}(x y z+z y x) \\
& =\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y) \tau^{i}(x)+t_{i}(z) \sigma^{i}(y) \tau^{i}(z)+ \tag{2}\\
& =t_{n}(x y z+z y x)
\end{align*}
$$

Comparing (1) and (2) and since $t_{i}(z) \sigma^{i}(y) \tau^{i}(x)=\tau^{i}(z) \sigma^{i}(y) t_{i}(x)$ we get

$$
t_{n}(x y z+z y x)=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y) \tau^{i}(x)+\tau^{i}(z) \sigma^{i}(y) t_{i}(z)
$$

(iv) Replace $y m+m y$ for y and $z w+w z$ for z in definition (2.1) we get
$t_{n}(x(y m+m y)+(z w+w z) x)$
$=t_{n}(x y m+x m y+z w x+w z x)$
$=t_{n}(x y m+w z x)+t_{n}(x m y+z w x)$
$=t_{n}(x(y m)+w(z x))+t_{n}((x m) y+z(w x))$
$=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y m)+\tau^{i}(w) t_{i}(z x)+\sum_{i=1}^{n} t_{i}(x m) \sigma^{i}(y)+\tau^{i}(z) t_{i}(w x)$
$=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y) \sigma^{i}(m)+\tau^{i}(w) \sigma^{i}(z) t_{i}(x)+\sum_{i=1}^{n} t_{i}(x) \tau^{i}(m) \sigma^{i}(y)+$
$\tau^{i}(z) \sigma^{i}(w) t_{i}(x)$

On the other hand
$t_{n}(x(y m+m y)+(z w+w z) x)$
$=t_{n}(x y m+x m y+z w x+w z x)$
$=t_{n}(x m y+w z x)+t_{n}(x y m+z w x)$
$=t_{n}(x(m y)+w(z x))+t_{n}(x y m+z w x)$
$=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(m y)+\tau^{i}(w) t_{i}(z x)+t_{n}(x y m+z w x)$
$=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(m) \sigma^{i}(y)+\tau^{i}(w) \sigma^{i}(z) t_{i}(x)+t_{n}(x y m+z w x)$
Comparing (1) and (2) we get

$$
\begin{equation*}
t_{n}(x y m+z w x)=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y) \tau^{i}(m)+\tau^{i}(z) \sigma^{i}(w) t_{i}(x) \tag{2}
\end{equation*}
$$

Remark (2.7):

let R be a ring, σ and τ are endomorphism from R into R, and let $T=\left(t_{i}\right)_{i \in N}$ be a Jordan higher (σ, τ) centralizer of R, we define $\delta_{n}: R \times R \rightarrow R$ by

$$
\delta_{n}(\mathrm{x}, \mathrm{y})=t_{n}(x y+y x)-\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y)+\tau^{i}(y) t_{i}(x)
$$

for every $x, y \in R$ and $n \epsilon N$
Now, we introduce in the following lemma the properties of $\delta_{n}(x, y)$

Lemma (2.8):

$$
\text { let } R \text { a be ring } T=\left(t_{i}\right)_{i \in N} \text { be a Jordan higher }(\sigma, \tau) \text {-centralizer of } R \text {, then for all } x, y, z \in R, n \in N
$$

(i) $\delta_{n}(x+y, z)=\delta_{n}(x, z)+\delta_{n}(y, z)$
(ii) $\delta_{n}(x, y+z)=\delta_{n}(x, y)+\delta_{n}(x, z)$

Proof:

(i) $\delta_{n}(x+y, z)=t_{n}\left((x+y) z+z(x+y)-\sum_{i=1}^{n} t_{i}(x+y) \sigma^{i}(z)+\right.$

$$
\begin{aligned}
& \tau^{i}(z) t_{i}(x+z) \\
& =t_{n}(x z+y z+z x+z y)-\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(z)+t_{i}(y) \sigma^{i}(z) \\
& \quad+\tau^{i}(z) t_{i}(x)+\tau^{i}(z) t_{i}(y)
\end{aligned}
$$

$$
\begin{aligned}
& =t_{n}(x z+z x)-\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(z)+\tau^{i}(z) t_{i}(x)+ \\
& \quad t_{n}(y z+z y)-\sum_{i=1}^{n} t_{i}(y) \sigma^{i}(z)+\tau^{i}(z) t_{i}(y) \\
& = \\
& \delta_{n}(x, z)+\delta_{n}(y, z)
\end{aligned}
$$

(ii) $\delta_{n}(x, y+z)=t_{n}(x(y+z)+(y+z) x)-\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y+z)$

$$
\begin{aligned}
& +\tau^{i}(y+z) t_{i}(x) \\
= & t_{n}(x y+x z+y x+z x)-\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y)+t_{i}(x) \sigma^{i}(z) \\
& +\tau^{i}(y) t_{i}(x)+\tau^{i}(z) t_{i}(x) \\
= & t_{n}(x y+y x)-\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y)+\tau^{i}(y) t_{i}(x)+ \\
& t_{n}(x z+z x)-\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(z)+\tau^{i}(z) t_{i}(x) \\
= & \delta_{n}(x, y)+\delta_{n}(x, z)
\end{aligned}
$$

Remark (2.9):

Note that $T=\left(t_{i}\right)_{i \in N}$ is higher (σ, τ)-centralizer of a ring R if and only if $\delta_{n}(x, y)=0$,for all $x, y \in R$ and $n \in N$.

3) The Main Results

In this section, we introduce our main results. We have prove that every Jordan higher (σ, τ)-centralizer of prime ring is higher (σ, τ)-centralizer of R and we prove that Jordan higher (σ, τ)-centralizer of 2-torsion free ring R is Jordan triple higher (σ, τ)-centralizer.

Theorem (3.1):

Let R be a prime ring, σ and τ are commutating endomorphism from R into R and $T=\left(t_{i}\right)_{i \in N}$ be a Jordan higher (σ, τ)-centralizer from R into R, then $\delta_{n}(x, y)=0$, for all $x, y \in R$ and $n \in N$.

Proof:

Replace $2 y x$ for z in lemma (2.6)(iii) we get
$t_{n}(x y(2 y x)+(2 y x) y x)$
$=t_{n}(x y y x+x y y x+y x y x+y x y x)$
$=t_{n}(x y y x+x y x y)+t_{n}(x y y x+x y x y)$
$=t_{n}((x y) y x+(y x) y x)+t_{n}((x y)(y x)+(y x)(y x))$
$=\sum_{i=1}^{n} t_{i}(x y) \sigma^{i}(y) \tau^{i}(x)+\tau^{i}(y x) \sigma^{i}(y) t_{i}(x)+\sum_{i=1}^{n} t_{i}(x y) \sigma^{i}(y x)$
$+\tau^{i}(y x) t_{i}(y x)$
$=\sum_{\substack{i=1 \\ n}} t_{i}(x) \sigma^{i}(y) \sigma^{i}(y) \tau^{i}(x)+\tau^{i}(y) \tau^{i}(x) \sigma^{i}(y) t_{i}(x)+$
$\sum_{i=1}^{n} t_{i}(x) \tau^{i}(y) \sigma^{i}(y) \sigma^{i}(x)+\tau^{i}(y) \tau^{i}(x) \sigma^{i}(y) t_{i}(x)$
$=\left(\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y)+\tau^{i}(y) t_{i}(x)\right) \cdot \sigma^{n}(y) \tau^{n}(x)+$
$\sum_{i=1}^{n} t_{i}(x) \tau^{i}(y) \sigma^{i}(y) \sigma^{i}(x)+\tau^{i}(y) \tau^{i}(x) \sigma^{i}(y) t_{i}(x)$
$=t_{n}(x y+y x) \cdot \sigma^{n}(y) \tau^{n}(x)+\sum_{i=1}^{n} t_{i}(x) \tau^{i}(y) \sigma^{i}(y) \sigma^{i}(x)+$
$\tau^{i}(y) \tau^{i}(x) \sigma^{i}(y) t_{i}(x)$

On the other hand
$t_{n}(x y(2 y x)+(2 y x) y x)$
$=t_{n}(x y y x+x y y x+y x y x+y x y x)$
$=t_{n}(x y y x+x y x y)+t_{n}(x y y x+x y x y)$
$=t_{n}(x(y y) x+(y x) y x)+t_{n}((x y)(y x)+(y x)(y x))$
$=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y y) \tau^{i}(x)+\tau^{i}(y x) \sigma^{i}(y) t_{i}(x)+$
$\sum_{i=1}^{n} t_{i}(x y) \sigma^{i}(y x)+\tau^{i}(y x) t_{i}(y x)$
$=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y) \sigma^{i}(y) \tau^{i}(x)+\tau^{i}(y) \tau^{i}(x) \sigma^{i}(y) t_{i}(x)+$

$$
\begin{equation*}
\sum_{i=1}^{n} t_{i}(x) \tau^{i}(y) \sigma^{i}(y) \sigma^{i}(x)+\tau^{i}(y) \tau^{i}(x) \sigma^{i}(y) t_{i}(x) \tag{2}
\end{equation*}
$$

Comparing (1) and (2) we get

$$
\begin{aligned}
& t_{n}(x y+y x) \cdot \sigma^{n}(y) \tau^{n}(x)=\left(\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y)+\tau^{i}(y) t_{i}(x)\right) \cdot \sigma^{n}(y) \tau^{n}(x) \\
& \quad \rightarrow\left(t_{n}(x y+y x)-\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y)+\tau^{i}(y) t_{i}(x)\right) \cdot \sigma^{n}(y) \tau^{n}(x)=0 \\
& \quad \rightarrow \delta_{n}(x, y) \cdot \sigma^{n}(y) \tau^{n}(x)=0
\end{aligned}
$$

And since R is prime ring then

$$
\delta_{n}(x, y)=0
$$

Corollary (3.2):

Every Jordan higher (σ, τ)-centralizer of prime ring R is higher (σ, τ)-centralizer of R.
Proof:
By theorem (3.1) and Remark (2.9) We obtain the required result .

Proposition (3.3):

Let R be 2-torsion free ring, σ and τ are commutating endomorphism of R then every Jordan higher (σ, τ)-centralizer is a Jordan triple higher (σ, τ)-centralizer.

Proof:

Let $\left(t_{i}\right)_{i \in N}$ be a higher (σ, τ)-centralizer of a ring
Replace $(x y+y x)$ for y in definition (2.3.3), we get
$t_{n}(x(x y+y x)+(x y+y x) x)$
$=t_{n}(x x y+x y x+x y x+y x x)$
$=t_{n}(x x y+y x x)+t_{n}(x y x+x y x)$
$=t_{n}(x(x y)+y(x x))+t_{n}(2 x y x)$
$=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(x y)+\tau^{i}(y) t_{i}(x x)+2 t_{n}(x y x)$
$=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(x) \sigma^{i}(y)+\tau^{i}(y) \sigma^{i}(x) t_{i}(x)+2 t_{n}(x y x)$
On the other hand

$$
\begin{align*}
& t_{n}(x(x y+y x)+(x y+y x) x) \tag{1}\\
& =t_{n}(x x y+x y x+x y x+y x x) \\
& =t_{n}(x y x+y x x)+t_{n}(x x y+x y x) \\
& =t_{n}(x(y x)+y(x x))+t_{n}((x x) y+x(y x)) \\
& =\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y x)+\tau^{i}(y) t_{i}(x x)+\sum_{i=1}^{n} t_{i}(x x) \sigma^{i}(y)+\tau^{i}(x) t_{i}(y x)
\end{align*}
$$

$$
\begin{align*}
&= \sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y) \sigma^{i}(x)+\tau^{i}(y) \sigma^{i}(x) t_{i}(x)+\sum_{i=1}^{n} t_{i}(x) \tau^{i}(x) \sigma^{i}(y)+ \\
& \quad \tau^{i}(x) \sigma^{i}(y) t_{i}(x) \tag{2}
\end{align*}
$$

Comparing (1) and (2) we get

$$
2 t_{n}(x y x)=2 \sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y) \tau^{i}(x)
$$

Since R is 2 -torsion free then we get

$$
t_{n}(x y x)=\sum_{i=1}^{n} t_{i}(x) \sigma^{i}(y) \tau^{i}(x)
$$

References

[1] E.Albas, "On τ-Centralizers of Semiprime Rings", Siberian Mathematical Journal, Vol.48, No.2, pp.191-196, 2007.
[2] W.Cortes and C.Haetinger," On Lie Ideals Left Jordan σ-centralizers of 2-torsion Free Rings", Math.J.Okayama Univ., Vol.51, No.1, pp.111-119, 2009.
[3] J.Vukman,"Centralizers in Prime and Semiprime Rings", Comment. Math.Univ. Carolinae, pp.231-240, 38(1997).
[4] J.Vakman, "An Identity Related to Centralizers in Semiprime Rings", Comment. Math.Univ.Carolinae, 40, pp.447-456, 3(1999).
[5] J.Vakman, "Centralizers on Semiprime Rings", Comment. Math. Univ. Carolinae, 42, pp.237-245, 2(2001).
[6] B.Zalar, "On Centralizers of Semiprime Ring", Comment. Math. Univ. Carol.32, pp.609-614, 1991.

