Jordan Higher K-Centralizer on Γ-Rings

Salah M. Salih, Ali M.Kamal, Balsam M. Hamad
Department of Mathematics, College of Education, Al-Mustansiriya University

Abstract: Let M be a semiprime Γ-ring satisfying a certain assumption. Then we prove that every Jordan left higher k-centralizer on M is a left higher k-centralizer on M. We also prove that every Jordan higher k centralizer of a 2 -torsion free semiprime Γ-ring M satisfying a certain assumption is a higher k-centralizer.
 Keywords: Semiprime Γ-ring, left higher centralizer, higher k-centralizer, Jordan higher k-centralizer.

I. Introduction:

The definition of a Γ-ring was introduced by Nobusawa [7] and generalized by Barnes [2] as follows:
Let M and Γ be two additive abelian groups. If there exists a mapping $\quad \mathrm{M} \times \Gamma \times \mathrm{M} \longrightarrow \mathrm{M}$ (the image of (a, α, b) being denoted by $a \alpha b ; a, b \in \mathrm{M}$ and $\alpha \in \Gamma$) satisfying for all $a, b, c \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
(i) $(a+b) \alpha c=a \alpha c+b \alpha c$,
$a(\alpha+\beta) c=a \alpha c+a \beta c$,
$a \alpha(b+c)=a \alpha b+a \alpha c$
(iii) $(a \alpha b) \beta c=a \alpha(b \beta c)$.

Then M is called a Γ-ring.
In [3] F.J.Jing defined a derivation on Γ-ring, as follows:
An additive map $d: M \longrightarrow M$ is said to be a derivation of M if

$$
d(x \alpha y)=d(x) \alpha y+x \alpha d(y), \text { for all } x, y \in M \text { and } \alpha \in \Gamma
$$

M.Soponci and A.Nakajima in [8] defined a Jordan derivation on Γ-ring, as follows:

An additive map d: $\mathrm{M} \longrightarrow \mathrm{M}$ is called a Jordan derivation of Γ-ring if $\mathrm{d}(\mathrm{x} \alpha \mathrm{x})=\mathrm{d}(\mathrm{x}) \alpha \mathrm{x}+\mathrm{x} \alpha \mathrm{d}(\mathrm{x})$, for all $\mathrm{x} \in \mathrm{M}$ and $\alpha \in \Gamma$
A.H.Majeed and S.M.Salih in [6] defined a higher derivation and Jordan higher derivation on Γ-ring as follows:

A family of additive mapping of $\mathrm{M}, \mathrm{D}=\left(\mathrm{d}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ is called a higher derivation of M if for every $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$, $\mathrm{n} \in \mathrm{N}$

$$
d_{n}(x \alpha y)=\sum_{i+j=n} d_{i}(x) \alpha d_{j}(y)
$$

D is called Jordan derivation of M if

$$
\mathrm{d}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{x})=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{~d}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{d}_{\mathrm{j}}(\mathrm{x})
$$

In 2011 M.F.Hoque and A.C.Paul, [5], also B.Zalar in [11] defined a centralizer on Γ-ring, as follows
An additive mapping $\mathrm{T}: \mathrm{R} \longrightarrow \mathrm{R}$ is left (right) centralizer if
$\mathrm{T}(\mathrm{x} \alpha \mathrm{y})=\mathrm{T}(\mathrm{x}) \alpha \mathrm{y}(\mathrm{T}(\mathrm{x} \alpha \mathrm{y})=\mathrm{x} \alpha \mathrm{T}(\mathrm{y}))$ holds for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$.
In [5], defined a Jordan centralizer on Γ-ring,
An additive mapping $\mathrm{T}: \mathrm{M} \longrightarrow \mathrm{M}$ is Jordan left (right) centralizer if

$$
\mathrm{T}(\mathrm{x} \alpha \mathrm{x})=\mathrm{T}(\mathrm{x}) \alpha \mathrm{x}(\mathrm{~T}(\mathrm{x} \alpha \mathrm{x})=\mathrm{x} \alpha \mathrm{~T}(\mathrm{x})) \text { for all } \mathrm{x} \in \mathrm{M} \text { and } \alpha \in \Gamma .
$$

In [9] Salah M.Salih and Balsam Majid H. defined a higher centralizer on $\quad \Gamma$-ring, as follows:
A family of additive mapping of M, such that $t_{0}=\operatorname{id}_{M}$ then T is said to be higher centralizer of M if

$$
\mathrm{t}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{y}+\mathrm{y} \beta \mathrm{x})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{y} \beta \mathrm{t}_{\mathrm{i}}(\mathrm{x})
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha, \beta \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$.
In [9], defined a Jordan higher centralizer on Γ-ring, as follows:
A family of additive mappings of M, such that $t_{0}=\mathrm{id}_{M}$ then T is said to be a Jordan higher centralizer of M if

$$
\mathrm{t}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{x}+\mathrm{x} \alpha \mathrm{x})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{x}+\mathrm{x}_{\mathrm{x}} \mathrm{t}_{\mathrm{i}}(\mathrm{x})
$$

for all $\mathrm{x} \in \mathrm{M}, \alpha \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$.
Z.Ullah and M.A. Chaudhay [10] developed the concepts of a K-centralizer on a semiprime Γ-ring and Jordan K-centralizer on Γ-ring as follows:
Let M be a Γ-ring and $\mathrm{K}: \mathrm{M} \longrightarrow \mathrm{M}$ an automorphism such that $\quad \mathrm{K}(\mathrm{x} \alpha \mathrm{y})=\mathrm{K}(\mathrm{x}) \alpha \mathrm{K}(\mathrm{y})$ for all x , $\mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$. An additive mapping $\mathrm{T}: \mathrm{M} \longrightarrow \mathrm{M}$ is a left (right K -centralizer if $\mathrm{T}(\mathrm{x} \alpha \mathrm{y})=\mathrm{T}(\mathrm{x}) \alpha \mathrm{K}(\mathrm{y})$ (T(xay) $=\mathrm{K}(\mathrm{x}) \alpha \mathrm{T}(\mathrm{y}))$ holds for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$. T is called a K -centralizer if it is both a left and right K -centralizer.

In this paper, we define and study higher K-centralizer, Jordan higher K-centralizer, and we prove that every Jordan higher K-centralizer of a semiprime Γ-ring is a higher K-centralizer. Throught this paper we denote the set of all natural numbers include zero.

II. Preliminaries

In this section we will introduce the definition of K-higher centralizer, Jordan K-higher centralizer and describe some notions.

Definition (2.1):

Let M be a Γ-ring. An additive subgroup U of M is called a left (right) ideal of M if $\mathrm{M} \Gamma \mathrm{U} \subset \mathrm{U}(\mathrm{U} \Gamma \mathrm{M} \subset \mathrm{U})$. If U is both a left and right ideal, then U is called an ideal of M.

Definition (2.2):

An ideal P of a Γ-ring M is called prime ideal if for any ideals A, B of $\mathrm{M}, \quad \mathrm{A}, \mathrm{B} \subseteq \mathrm{P}$, implies $\mathrm{A} \subseteq \mathrm{P}$ or $\mathrm{B} \subseteq \mathrm{P}$.

Definition (2.3):

An ideal P of a Γ-ring M is called semi-prime if for any ideal A of M,
$\mathrm{A} \Gamma \mathrm{A} \subseteq \mathrm{P}$, implies $\mathrm{A} \subseteq \mathrm{P}$.

Definition (2.4):

A Γ-ring M is said to be prime if $a \Gamma \mathrm{M} \Gamma b=\{0\}, a, b \in \mathrm{M}$, implies $a=0$ or $b=0$.

Definition (2.5):

A Γ-ring M is said to be semiprime if $a \Gamma \mathrm{M} \Gamma a=\{0\}, a \in \mathrm{M}$, implies $a=0$.

Definition (2.6):

A Γ-ring M is said to be commutative if $x \alpha y=y \alpha x$ for all $x, y \in M, \alpha \in \Gamma$.

Definition (2.7):

A Γ-ring M is said to be 2-torsion free if $2 \mathrm{x}=0$ implies $\mathrm{x}=0$ for all $\mathrm{x} \in \mathrm{M}$.

Definition (2.8):

Let M be a Γ-ring. Then the set
$Z(M)=\{x \in M: x \alpha y=y \alpha x$ for all $y \in M, \alpha \in \Gamma\}$
is called the center of the Γ-ring M .

III. The Higher K-Centralizer of Semiprime Г-Ring

Now we will introduce the definition of left (right) higher K-centralizer and higher K-centralizer, Jordan higher K-centralizer on Γ-ring and other concepts which be used in our work.

Definition (3.1):

Let M be a Γ-ring and $\mathrm{T}=\left(\mathrm{t}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mappings of M , such that $\mathrm{t}_{0}=\mathrm{id}_{\mathrm{M}}$ and $\mathrm{K}=$ $\left(k_{i}\right)_{i \in N}$ a family of automorphism. Then T is said to be left (right) higher K-centralizer if

$$
T_{n}(x \alpha y)=\sum_{i+j=n} t_{i}(x) \alpha k_{j}(y) \quad\left(T_{n}(x \alpha y)=\sum_{i+j=n} k_{i}(x) \alpha t_{j}(y)\right)
$$

holds for all $x, y \in M, \alpha \in \Gamma . T_{n}$ is called a higher K-centralizer if it is both a left and a right K-centralizer.

For any fixed $a \in \mathrm{M}$ and $\alpha \in \Gamma$, the mapping $\mathrm{T}_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{i}=\mathrm{n}} a \alpha \mathrm{k}_{\mathrm{i}}(\mathrm{x})$ is a left higher K-centralizer and $\mathrm{T}_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{i}=\mathrm{n}} \mathrm{k}_{\mathrm{i}}(\mathrm{x}) \alpha a$ is a right K-centralizer.

Definition (3.2):

Let M be a Γ-ring and $T=\left(\mathrm{t}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mappings of M , such that $\mathrm{t}_{0}=\mathrm{id}_{\mathrm{M}}$ and $\mathrm{K}=$ $\left(k_{i}\right)_{i \in N}$ a family of automorphism. Then T is said Jordan left (right) higher K-centralizer if

$$
\mathrm{T}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{x})=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{x}) \quad\left(\mathrm{T}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{x})=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{k}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{t}_{\mathrm{j}}(\mathrm{x})\right)
$$

holds for all $\mathrm{x} \in \mathrm{M}, \alpha \in \Gamma$.

Definition (3.3):

Let M be a Γ-ring and $\mathrm{T}=\left(\mathrm{t}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mappings of M , such that $\mathrm{t}_{0}=\mathrm{id}_{\mathrm{M}}$ and $\mathrm{K}=$ $\left(k_{i}\right)_{i \in N}$ a family of automorphism. Then T is said Jordan higher K-centralizer if

$$
\mathrm{T}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{y}+\mathrm{y} \alpha \mathrm{x})=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{x})+\mathrm{k}_{\mathrm{j}}(\mathrm{y}) \alpha \mathrm{t}_{\mathrm{i}}(\mathrm{x})
$$

holds for all $x, y \in M, \alpha \in \Gamma$.

Lemma (3.4): [5]

Let M be a semiprime Γ-ring. If $a, b \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$ are such that $\quad a \alpha \times \beta b=0$ for all $\mathrm{x} \in$ M then $a \alpha b=b \alpha a=0$.

Lemma (3.5): [5]

Let M be a semiprime Γ-ring and $\mathrm{A}: \mathrm{M} \times \mathrm{M} \longrightarrow \mathrm{M}$ a additive mapping. If $A(x, y) \alpha w \beta(x, y)=0$ for all x, $y, w \in M$ and $\alpha, \beta \in \Gamma$, then $A(x, y) \alpha w \beta(u, v)=0$ for all $x, y, u, v \in M$ and $\alpha, \beta \in \Gamma$.

Lemma (3.6): [5]

Let M be a semiprime Γ-ring satisfying the assumption $x \alpha y \beta z=x \beta y \alpha z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. If $a \in \mathrm{M}$ is a fixed element such that $a \alpha[\mathrm{x}, \mathrm{y}] \beta=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$, then there exists an ideal U of M such that

$$
a \in \mathrm{U} \subset \mathrm{Z}(\mathrm{M})
$$

Lemma (3.7): [5]

Let M be a semiprime Γ-ring satisfying the assumption $\mathrm{x} \alpha \mathrm{y} \beta \mathrm{z}=\mathrm{x} \beta \mathrm{y} \alpha \mathrm{z}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$.
Let D be a derivation of M and $\alpha \in M$, a fixed element
(i) If $\mathrm{D}(\mathrm{x}) \alpha \mathrm{D}(\mathrm{y})=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$, then $\mathrm{D}=0$.
(ii) If $a \alpha \mathrm{x}-\mathrm{x} \alpha a \in \mathrm{Z}(\mathrm{M})$ for all $\mathrm{x} \in \mathrm{M}$ and $\alpha \in \Gamma$, then $a \in \mathrm{Z}(\mathrm{M})$.

Lemma (3.8): [5]

Let M be a semiprime Γ-ring satisfying the assumption $\mathrm{x} \alpha \mathrm{y} \beta \mathrm{z}=\mathrm{x} \beta \mathrm{y} \alpha \mathrm{z}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$. Let $a, b \in \mathrm{M}$ be two fixed elements such that $\quad a \alpha \mathrm{x}=\mathrm{x} \alpha b$ for all $\mathrm{x} \in \mathrm{M}$ and $\alpha \in \Gamma$. Then $a=b \in$ Z(M).

Lemma (3.9):

Let M be a semiprime Γ-ring satisfying the assumption $\mathrm{x} \alpha \mathrm{y} \beta \mathrm{z}=\mathrm{x} \beta \mathrm{y} \alpha \mathrm{z}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$.
Let $\mathrm{T}: \mathrm{M} \longrightarrow \mathrm{M}$ be a Jordan left higher K -centralizer, then
(a) $\mathrm{T}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{y}+\mathrm{y} \alpha \mathrm{x})=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{y})+\mathrm{t}_{\mathrm{i}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{y})$
(b) $\mathrm{T}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{y} \beta \mathrm{x}+\mathrm{x} \beta \mathrm{y} \alpha \mathrm{x})=\sum_{\mathrm{i}+\mathrm{j}+\mathrm{s}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{x})+\mathrm{t}_{\mathrm{i}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{s}}(\mathrm{x})$
(c) If M is a 2-torsion free Γ-ring satisfying the above assumption, then
(i) $\mathrm{T}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{y} \beta \mathrm{x})=\sum_{\mathrm{i}+\mathrm{j}+\mathrm{s}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{x})$
(ii) $\mathrm{T}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{y} \beta \mathrm{z}+\mathrm{z} \beta \mathrm{y} \alpha \mathrm{x})=\sum_{\mathrm{i}+\mathrm{j}+\mathrm{s}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{z})+\mathrm{t}_{\mathrm{i}}(\mathrm{z}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{s}}(\mathrm{z})$

Proof:

Since T_{n} is a Jordan left higher K-centralizer, therefore
(1) $T_{n}(x \alpha x)=\sum_{i+j=n} t_{i}(x) \alpha k_{j}(x)$.
(a) Replacing x by $\mathrm{x}+\mathrm{y}$ in (1), we get
(2) $T_{n}(x \alpha y+y \alpha x)=\sum_{i+j=n} t_{i}(x) \alpha k_{j}(y)+t_{i}(y) \alpha k_{j}(x)$ for all $x, y \in M$ and $\alpha \in \Gamma$.
(b) Replacing y by $\mathrm{x} \alpha \mathrm{y}+\mathrm{y} \alpha \mathrm{x}$ and α by β in (2), we get $\mathrm{T}_{\mathrm{n}}(\mathrm{x} \beta(\mathrm{x} \alpha \mathrm{y}+\mathrm{y} \alpha \mathrm{x})+(\mathrm{x} \alpha \mathrm{y}+\mathrm{y} \alpha \mathrm{x}) \beta \mathrm{x})=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{x} \alpha \mathrm{y}+\mathrm{y} \alpha \mathrm{x})+\mathrm{t}_{\mathrm{i}}(\mathrm{x} \alpha \mathrm{y}+\mathrm{y} \alpha \mathrm{x}) \alpha k_{\mathrm{j}}(\mathrm{x})$

The last relation along with (2) implies

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{n}}(\mathrm{x} \beta \mathrm{x} \alpha \mathrm{y}+\mathrm{x} \beta \mathrm{y} \alpha \mathrm{x}+\mathrm{x} \alpha \mathrm{y} \beta \mathrm{x}+\mathrm{y} \alpha \mathrm{x} \beta \mathrm{x})=\sum_{\mathrm{i}+\mathrm{j}+\mathrm{s}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{s}}(\mathrm{y})+\mathrm{t}_{\mathrm{i}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{s}}(\mathrm{x})+ \\
& \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{x})+\mathrm{t}_{\mathrm{i}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{x})
\end{aligned}
$$

which gives

$$
\begin{array}{r}
T_{n}(x \beta x \alpha y+y \alpha x \beta x)+T_{n}(x \beta y \alpha x+x \alpha y \beta x)=\sum_{i+j+s=n} t_{i}(x) \beta k_{j}(x) \alpha k_{s}(y)+t_{i}(x) \beta k_{j}(y) \alpha k_{s}(x)+ \\
t_{i}(x) \alpha k_{j}(y) \beta k_{s}(x)+t_{i}(y) \alpha k_{j}(x) \beta k_{s}(x)
\end{array}
$$

the last relation along with (2) implies
(3) $\mathrm{T}_{\mathrm{n}}(\mathrm{x} \beta \mathrm{y} \alpha \mathrm{x}+\mathrm{x} \alpha \mathrm{y} \beta \mathrm{x})=\sum_{\mathrm{i}+\mathrm{j}+\mathrm{s}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{s}}(\mathrm{x})+\mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{x})$
(c) Using the assumption $x \alpha y \beta z=x \beta y \alpha z$ and 2-torsion freeness of M, from (3) we get
(4) $\mathrm{T}_{\mathrm{n}}(\mathrm{x} \beta \mathrm{y} \alpha \mathrm{x})=\sum_{\mathrm{i}+\mathrm{j}+\mathrm{s}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{s}}(\mathrm{x})$

Replacing x by $\mathrm{x}+\mathrm{z}$ in (4), we get
$\mathrm{T}_{\mathrm{n}}((\mathrm{x}+\mathrm{z}) \beta \mathrm{y} \alpha(\mathrm{x}+\mathrm{z}))=\sum_{\mathrm{i}+\mathrm{j}+\mathrm{s}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}+\mathrm{z}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{s}}(\mathrm{x}+\mathrm{z})$
Which implies
$\mathrm{T}_{\mathrm{n}}(\mathrm{x} \beta \mathrm{y} \alpha \mathrm{z}+\mathrm{z} \beta \mathrm{y} \alpha \mathrm{x})=\sum_{\mathrm{i}+\mathrm{j}+\mathrm{s}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{s}}(\mathrm{z})+\mathrm{t}_{\mathrm{i}}(\mathrm{z}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{s}}(\mathrm{x})$
The last relation along with the assumption $x \alpha y \beta z=x \beta y \alpha z$ gives
(5) $\mathrm{T}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{y} \beta \mathrm{z}+\mathrm{z} \beta \mathrm{y} \alpha \mathrm{x})=\sum_{\mathrm{i}+\mathrm{j}+\mathrm{s}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{z})+\mathrm{t}_{\mathrm{i}}(\mathrm{z}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{s}}(\mathrm{x})$.

Theorem (3.10):
Let M be a semiprime Γ-ring satisfying the assumption $x \alpha y \beta z=x \beta y \alpha z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Let $T_{n}: M \longrightarrow M$ be a Jordan left higher $\quad \mathrm{K}$-centralizer. Then T_{n} is a left higher K-centralizer.

Proof:

Using lemma (3.9-c(i)), we have

$$
\text { (6) } \begin{aligned}
\mathrm{T}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{y} \beta \mathrm{zYy} \alpha \mathrm{x}+\mathrm{y} \alpha \mathrm{x} \beta \mathrm{zYx} \alpha \mathrm{y})=\sum_{\mathrm{i}+\mathrm{j}+\mathrm{s}+\mathrm{t}+\mathrm{r}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{z}) \mathrm{Yk}_{\mathrm{t}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{r}}(\mathrm{x})+ \\
\mathrm{t}_{\mathrm{i}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{z}) \mathrm{Yk}_{\mathrm{t}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{r}}(\mathrm{y})
\end{aligned}
$$

Moreover, lemma (3.9-c(ii)) gives
(7) $\mathrm{T}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{y} \beta \mathrm{zYy} \alpha \mathrm{x}+\mathrm{y} \alpha x \beta \mathrm{zYx} \alpha \mathrm{y})=\sum_{\mathrm{i}+\mathrm{j}+\mathrm{s+t}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x} \alpha \mathrm{y}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{z}) \mathrm{Yk}_{\mathrm{s}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{t}}(\mathrm{x})+$

$$
\mathrm{t}_{\mathrm{i}}(\mathrm{y} \alpha \mathrm{x}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{z}) \mathrm{Yk}_{\mathrm{s}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{t}}(\mathrm{y})
$$

Subtracting (6) from (7), we get
$\left(\sum_{i+s+t+r=n} t_{i}(x \alpha y)-t_{j}(x) \alpha k_{s}(y)\right) \beta k_{s}(z) Y k_{t}(y) \alpha k_{r}(x)+$
$\left(\sum_{i+j+s+t+r=n} t_{i}(y \alpha x)-t_{j}(y) \alpha k_{s}(x)\right) \beta k_{s}(z) Y k_{t}(x) \alpha k_{r}(y)=0$
Which implies
(8) $\mathrm{H}(\mathrm{x}, \mathrm{y}) \beta \sum_{\mathrm{s}+\mathrm{t}+\mathrm{r}=\mathrm{n}} \mathrm{k}_{\mathrm{s}}(\mathrm{z}) \mathrm{Yk}_{\mathrm{t}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{r}}(\mathrm{x})+\mathrm{H}(\mathrm{y}, \mathrm{x}) \beta \sum_{\mathrm{s}+\mathrm{t}+\mathrm{r}=\mathrm{n}} \mathrm{k}_{\mathrm{s}}(\mathrm{z}) \mathrm{Yk}_{\mathrm{t}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{r}}(\mathrm{y})=0$

When $H(x, y)=\sum_{i=n} t_{i}(x \alpha y)-\sum_{i+j=n} t_{i}(x) \alpha y k_{j}(y)$
Which along with (2) implies $\mathrm{H}(\mathrm{x}, \mathrm{y})=-\mathrm{H}(\mathrm{y}, \mathrm{x})$
Using the last relation, from (8), we get
$\mathrm{H}(\mathrm{x}, \mathrm{y}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{z}) \mathrm{Y}\left[\mathrm{k}_{\mathrm{t}}(\mathrm{x}) \mathrm{k}_{\mathrm{r}}(\mathrm{y})\right]_{\alpha}=0$
Replacing x by $\mathrm{k}_{\mathrm{t}}^{-1}(\mathrm{x})$, y by $\mathrm{k}_{\mathrm{r}}^{-1}(\mathrm{y})$ and z by $\mathrm{k}_{\mathrm{s}}^{-1}(\mathrm{z})$ in the last relation, we get
$\mathrm{H}\left(\mathrm{k}_{\mathrm{t}}^{-1}(\mathrm{x}), \mathrm{k}_{\mathrm{r}}^{-1}(\mathrm{y})\right) \beta \mathrm{zY}[\mathrm{x}, \mathrm{y}]_{\alpha}=0$
The last relation along with lemma 3.5 implies
$\mathrm{H}\left(\mathrm{k}_{\mathrm{t}}^{-1}(\mathrm{x}), \mathrm{k}_{\mathrm{r}}^{-1}(\mathrm{y})\right) \beta \mathrm{zY}[\mathrm{u}, \mathrm{v}]_{\alpha}=0$.
Replacing x by $\mathrm{k}_{\mathrm{t}}(\mathrm{x})$ and y by $\mathrm{k}_{\mathrm{r}}(\mathrm{y})$ in the last relation, we get
(9) $\mathrm{H}(\mathrm{x}, \mathrm{y}) \beta \mathrm{zY}[\mathrm{u}, \mathrm{v}]_{\alpha}=0$.

Using lemma 3.4 in (9), we get
(10) $\mathrm{H}(\mathrm{x}, \mathrm{y}) \beta[\mathrm{u}, \mathrm{v}]_{\alpha}=0$.

We now fix some $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and denote $\mathrm{H}(\mathrm{x}, \mathrm{y})$ by H . Using lemma 3.6 we get the existence of an ideal U such that $\mathrm{H} \in \mathrm{U} \subseteq \mathrm{Z}(\mathrm{M})$.
In particular, $b \alpha \mathrm{H}, \mathrm{H} \alpha b \in \mathrm{Z}(\mathrm{M})$ for all $b \in \mathrm{M}$, then
$x \alpha(H \beta H Y y)=(H \beta H Y y) \alpha x=(y Y H \beta H) \alpha x=y Y(H \beta H \alpha x)=(H \beta H \alpha x) Y y$
which implies
$4 \mathrm{~T}_{\mathrm{n}}\left(\mathrm{x} \alpha(\mathrm{H} \beta \mathrm{HYy})=4 \mathrm{~T}_{\mathrm{n}}(\mathrm{yY}(\mathrm{H} \beta H \alpha \mathrm{x}))\right.$
Which gives
$2 \mathrm{~T}_{\mathrm{n}}(\mathrm{x} \alpha H \beta H Y y+\mathrm{x} \alpha H \beta H Y y)=2 \mathrm{~T}_{\mathrm{n}}(\mathrm{yYH} \beta \mathrm{H} \alpha \mathrm{x}+\mathrm{y} Y H \beta H \alpha x)=$
$2 \mathrm{~T}_{\mathrm{n}}(\mathrm{x} \alpha H \beta H Y y+\mathrm{H} \beta H Y y \mathrm{x} \alpha)=2 \mathrm{~T}_{\mathrm{n}}(\mathrm{yYH} \beta H \alpha \mathrm{x}+\mathrm{H} \beta H \alpha x Y y)$
Using (2) in the last relation, we get
$2 \sum_{i+j+s+t=n} t_{i}(x) \alpha k_{j}(H) \beta k_{s}(H) Y k_{t}(y)+2 \sum_{i+j=n} t_{i}(H \beta H Y y) \alpha k_{j}(x)=$
$2 \sum_{i+j+s+t=n} \mathrm{t}_{\mathrm{i}}(\mathrm{y}) \mathrm{Yk}_{\mathrm{j}}(\mathrm{H}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{H}) \alpha \mathrm{k}_{\mathrm{t}}(\mathrm{y})+2 \sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{H} \beta \mathrm{H} \alpha \mathrm{x}) \mathrm{Yk}_{\mathrm{j}}(\mathrm{y})$
Which implies
$2 \sum_{i+j+s+t=n} t_{i}(x) \alpha k_{j}(H) \beta k_{s}(H) Y k_{t}(y)+\sum_{i+j=n} t_{i}(H \beta H Y y+y Y H \beta H) \alpha k_{j}(x)=$
$2 \sum_{i+j+s+t=n} \mathrm{t}_{\mathrm{i}}(\mathrm{y}) \mathrm{Yk}_{\mathrm{j}}(\mathrm{H}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{H}) \alpha \mathrm{k}_{\mathrm{t}}(\mathrm{x})+\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{H} \beta \mathrm{H} \alpha \mathrm{x}+\mathrm{x} \alpha \mathrm{H} \beta \mathrm{H}) \mathrm{Yk}_{\mathrm{j}}(\mathrm{y})$
The last relation along with (2) gives

$$
\begin{aligned}
& 2 \sum_{i+j+s+t=n} t_{i}(x) \alpha k_{j}(H) \beta k_{s}(H) Y k_{t}(y)+\sum_{i+j=n}\left(\sum_{r+s+t=i} t_{r}(H) \beta k_{s}(H) Y k_{t}(y)+\right. \\
& \left.\sum_{r+s+t=i} t_{r}(y) Y k_{s}(H) \beta k_{t}(H) \alpha k_{j}(y)\right)=2 \sum_{i+j+s+t=n} t_{i}(y) Y k_{j}(H) \beta k_{s}(H) \varepsilon k_{t}(x)+ \\
& \sum_{i+j=n}\left(\sum_{r+s+t=i} t_{r}(H) \beta k_{s}(H) \alpha k_{t}(x) Y k_{j}(y)+\sum_{r+s+t=i} t_{r}(x) \alpha k_{s}(H) \beta k_{t}(H) Y k_{j}(y)\right)
\end{aligned}
$$

So, we have
$2 \sum_{i+j+s+t=n} t_{i}(x) \alpha k_{j}(H) \beta k_{s}(H) Y k_{t}(y)+\sum_{r+s+t+j=n} t_{r}(H) \beta k_{s}(H) Y k_{t}(y) \alpha k_{j}(x)+$
$\sum_{r+s+t+j=n} t_{r}(y) Y k_{s}(H) \beta k_{t}(H) \alpha k_{j}(x)=2 \sum_{i+j+s+t=n} t_{i}(y) Y k_{j}(H) \beta k_{s}(H) \alpha k_{t}(x)+$
$\sum_{r+s+t+j=n} \mathrm{t}_{\mathrm{r}}(\mathrm{H}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{H}) \alpha \mathrm{k}_{\mathrm{t}}(\mathrm{x}) \mathrm{Yk}_{\mathrm{j}}(\mathrm{y})+\sum_{\mathrm{r}+\mathrm{s}+\mathrm{t}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{r}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{s}}(\mathrm{H}) \beta \mathrm{k}_{\mathrm{t}}(\mathrm{H}) \mathrm{Yk}_{\mathrm{j}}(\mathrm{y})$
Which implies
$\sum_{i+j+s+t=n} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{H}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{H}) \mathrm{Yk}_{\mathrm{t}}(\mathrm{y})+\sum_{\mathrm{r}+\mathrm{s}+\mathrm{t}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{r}}(\mathrm{H}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{H}) \mathrm{Yk}_{\mathrm{t}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{x})=$
$\sum_{i+j+s+t=n} \mathrm{t}_{\mathrm{i}}(\mathrm{y}) \mathrm{Yk}_{\mathrm{j}}(\mathrm{H}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{H}) \alpha \mathrm{k}_{\mathrm{t}}(\mathrm{x})+\sum_{\mathrm{r}+\mathrm{s}+\mathrm{t}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{r}}(\mathrm{H}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{H}) \alpha \mathrm{k}_{\mathrm{t}}(\mathrm{x}) \mathrm{Yk}_{\mathrm{j}}(\mathrm{y})$
Replacing H by $\mathrm{k}_{\mathrm{w}}^{-1}(\mathrm{H})$, where $\mathrm{w}_{\mathrm{j}}=\mathrm{s}$ or t or j we get
$\sum_{\mathrm{i}+\mathrm{t}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{H} \beta \mathrm{HYk}_{\mathrm{t}}(\mathrm{y})+\sum_{\mathrm{r}+\mathrm{t}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{r}}\left(\mathrm{k}_{\mathrm{r}}^{-1}(\mathrm{H})\right) \beta \mathrm{HYk}_{\mathrm{t}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{x})=$
$\sum_{i+t=n} t_{i}(y) Y H \beta H \alpha k_{t}(x)+\sum_{r+t+j=n} t_{r}\left(k_{r}^{-1}(H)\right) \beta H \alpha k_{t}(x) Y k_{j}(y)$
Since $H \in U \subseteq Z(M)$ and $x \alpha y \beta z=x \beta y \alpha z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$, therefore
$\operatorname{HYk}_{\mathrm{t}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{x})=\operatorname{HYk}_{\mathrm{t}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{x})=\mathrm{k}_{\mathrm{j}}(\mathrm{x}) \alpha\left(\operatorname{Hyk}_{\mathrm{t}}(\mathrm{y})\right)=\left(\mathrm{k}_{\mathrm{j}}(\mathrm{x}) \alpha \mathrm{H}\right) \mathrm{Yk}_{\mathrm{t}}(\mathrm{y})=\operatorname{Hak}_{\mathrm{j}}(\mathrm{x}) \mathrm{Yk}_{\mathrm{t}}(\mathrm{y})$
Using this in the last relation we get
(11) $\sum_{i+t=n} t_{i}(x) \alpha k_{t}(y) Y H \beta H=\sum_{i+t=n} t_{i}(y) Y H \beta H \alpha k_{t}(x)$.

Now since $\mathrm{H} \in \mathrm{U} \subseteq \mathrm{Z}(\mathrm{M})$, one has
$x \alpha y Y H \beta H=x \alpha(y Y H) \beta H=(x \alpha H) Y(y \beta H)=(H \alpha x) Y(H \beta y)$, therefore
$4 \mathrm{~T}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{y}) \mathrm{YH} \beta \mathrm{H}=4 \mathrm{~T}_{\mathrm{n}}(\mathrm{H} \alpha \mathrm{x}) \mathrm{Y}(\mathrm{H} \beta \mathrm{y})$, which implies
$2 T_{n}(x \alpha y Y H \beta H+H \beta H Y x \alpha y)=2 T_{n}(H \alpha x Y H \beta y+H \beta y Y H \alpha x)$.
The last relation along with (2) gives
$2 \sum_{i+j+s=n} t_{i}(x \alpha y) Y k_{j}(H) \beta k_{s}(H)+2 \sum_{i+j+s+t=n} t_{i}(H) \beta k_{j}(H) Y k_{s}(x) \alpha k_{t}(y)=$
$2 \sum_{i+j+s=n} t_{i}(H \alpha x) Y k_{j}(H) \beta k_{s}(Y)+2 \sum_{i+j+s=n} t_{i}(H \beta y) Y k_{j}(H) \alpha k_{s}(x)$
Which implies
$2 \sum_{i+j+s=n} t_{i}(x \alpha y) Y k_{j}(H) \beta k_{s}(H)+2 \sum_{i+j+s+t=n} t_{i}(H) \beta k_{j}(H) Y k_{s}(x) \alpha k_{t}(y)=$
$2 \sum_{i+j+s=n} t_{i}(x \alpha H+H \alpha x) Y k_{j}(H) \beta k_{s}(H)+\sum_{i+j+s=n} t_{i}(y \beta H+H \beta y) Y k_{j}(H) \alpha k_{s}(x)$
Which further gives
$2 \sum_{i+j+s=n} t_{i}(x \alpha y) Y k_{j}(H) \beta k_{s}(H)+2 \sum_{i+j+s+t=n} t_{i}(H) \beta k_{j}(H) Y k_{s}(x) \alpha k_{t}(y)=$ $\sum_{r+t+j+s=n} \mathrm{t}_{\mathrm{r}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{t}}(\mathrm{H}) \mathrm{Yk}_{\mathrm{j}}(\mathrm{H}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{y})+\mathrm{t}_{\mathrm{r}}(\mathrm{H}) \alpha \mathrm{k}_{\mathrm{t}}(\mathrm{H}) \mathrm{Yk}_{\mathrm{j}}(\mathrm{H}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{y})+$ $\sum_{r+t+j+s=n} t_{r}(y) \beta k_{t}(H) Y k_{j}(H) \alpha k_{s}(x)+t_{r}(H) \alpha k_{t}(y) \mathrm{Yk}_{j}(H) \beta k_{s}(y)$
Replacing H by $\mathrm{k}_{\mathrm{w}}^{-1}(\mathrm{H})$ in thae last relation, where $\mathrm{w}=\mathrm{j}$ or s or t , we get
$2 \sum_{i+j+s=n} t_{i}(x \alpha y) Y H \beta H+2 \sum_{i+s+t=n} t_{i}\left(k_{i}^{-1}(H)\right) \beta H Y k_{s}(x) \alpha k_{t}(y)=$
$\sum_{\mathrm{r}+\mathrm{s}=\mathrm{n}} \mathrm{t}_{\mathrm{r}}(\mathrm{x}) \alpha H Y H \mathrm{k}_{\mathrm{j}} \beta \mathrm{k}_{\mathrm{s}}(\mathrm{y})+\sum_{\mathrm{r}+\mathrm{t}+\mathrm{s}=\mathrm{n}} \mathrm{t}_{\mathrm{r}}\left(\mathrm{k}_{\mathrm{i}}^{-1}(\mathrm{H})\right) \beta \alpha \mathrm{k}_{\mathrm{t}}(\mathrm{x}) \mathrm{YH} \beta \mathrm{k}_{\mathrm{s}}(\mathrm{y})+$
$\sum_{r+s=n} \mathrm{t}_{\mathrm{r}}(\mathrm{y}) \beta H Y H \alpha \mathrm{k}_{\mathrm{s}}(\mathrm{x})+\sum_{\mathrm{r}+\mathrm{t}+\mathrm{s}=\mathrm{n}} \mathrm{t}_{\mathrm{r}}(\mathrm{H}) \beta \mathrm{k}_{\mathrm{t}}(\mathrm{x}) \mathrm{YHH}_{\mathrm{s}}(\mathrm{x})$
Since $\mathrm{H} \in \mathrm{U} \subseteq \mathrm{Z}(\mathrm{M})$ and $\mathrm{x} \alpha \mathrm{y} \beta \mathrm{z}=\mathrm{x} \beta \mathrm{y} \alpha \mathrm{z}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$, therefore
$2 \sum_{i=n} t_{i}(x \alpha y) Y H \beta H=\sum_{r+s=n} t_{r}(x) \alpha k_{s}(y) Y H \beta H+\sum_{r+s=n} t_{r}(y) Y H \beta H \alpha k_{s}(x)$
The last relation along with (11) gives
$\sum_{\mathrm{i}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x} \alpha \mathrm{y}) \mathrm{Y} H \beta \mathrm{H}=\sum_{\mathrm{r}+\mathrm{s}=\mathrm{n}} \mathrm{t}_{\mathrm{r}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{s}}(\mathrm{y}) \mathrm{Y} H \beta H$
That is $\mathrm{HYH} \beta \mathrm{H}=0$.
Using lemma 3.4 in the last relation we get
$\mathrm{H} \beta \mathrm{H}=0$
Now $H \beta M \alpha H=(H \beta H) \alpha M=\{0\}$.
Thus $\mathrm{H}=0$, that is
$\mathrm{T}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{y})-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{y})=0$. so, $\mathrm{T}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{y})=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{y})$.

Lemma (3.11):

Let M be a semiprime Γ-ring satisfying the assumption $\mathrm{x} \alpha \mathrm{y} \beta \mathrm{z}=\mathrm{x} \beta \mathrm{y} \alpha \mathrm{z}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$ and for some fixed element $m \in M$ if $T_{n}(X)=\sum_{i=1}^{n} \operatorname{mak}_{i}(X)+k_{i}(X) \alpha m$ is a Jordan higher K-centralizer, then $m \in Z(M)$.

Proof:

By hypothesis
(12) $\mathrm{T}_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{mak}_{\mathrm{i}}(\mathrm{x})+\mathrm{k}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{m}$

Since T_{n} is a Jordan higher K-centralizer, therefore
(13) $\mathrm{T}_{\mathrm{n}}(\mathrm{x} \beta \mathrm{y}+\mathrm{y} \beta \mathrm{x})=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y})+\mathrm{k}_{\mathrm{j}}(\mathrm{y}) \beta \mathrm{t}_{\mathrm{i}}(\mathrm{x})$

Using (12) in (13), we get
$\sum_{i=1}^{n} m \alpha k_{i}(x \beta y+y \beta x)+k_{j}(x \beta y+y \beta x) \alpha m=\sum_{i+j=n}\left(m \alpha k_{i}(x)+k_{i}(x) \alpha m\right) \beta k_{j}(y)+$ $\mathrm{k}_{\mathrm{j}}(\mathrm{y}) \beta\left(\mathrm{mak}_{\mathrm{i}}(\mathrm{x})+\mathrm{k}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{m}\right)$
Which implies
$\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{mak}_{\mathrm{i}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y})+\mathrm{mak}_{\mathrm{i}}(\mathrm{y}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{x})+\mathrm{k}_{\mathrm{j}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \alpha \mathrm{m}+\mathrm{k}_{\mathrm{i}}(\mathrm{y}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{x}) \alpha \mathrm{m}$
$=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}}\left(\operatorname{mak}_{\mathrm{i}}(\mathrm{x})+\mathrm{k}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{m}\right) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y})+\mathrm{k}_{\mathrm{j}}(\mathrm{y}) \beta\left(\mathrm{mak}_{\mathrm{i}}(\mathrm{x})+\mathrm{k}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{m}\right)$
So, we have
$\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} m \alpha \mathrm{k}_{\mathrm{i}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y})+\mathrm{mak}_{\mathrm{i}}(\mathrm{y}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{x})+\mathrm{k}_{\mathrm{i}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \alpha \mathrm{m}+\mathrm{k}_{\mathrm{i}}(\mathrm{y}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{x}) \alpha \mathrm{m}$
$=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \operatorname{mak}_{\mathrm{i}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y})+\mathrm{k}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{m} \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y})+\mathrm{k}_{\mathrm{j}}(\mathrm{y}) \beta \mathrm{m}_{\mathrm{k}} \mathrm{k}_{\mathrm{i}}(\mathrm{x})+\mathrm{k}_{\mathrm{j}}(\mathrm{y}) \beta \mathrm{k}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{m}$

Which further gives

$$
\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \operatorname{mak}_{\mathrm{i}}(\mathrm{y}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{x})+\mathrm{k}_{\mathrm{i}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \alpha \mathrm{m}=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{k}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{m} \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y})+\mathrm{k}_{\mathrm{j}}(\mathrm{y}) \beta \mathrm{m} \alpha \mathrm{k}_{\mathrm{i}}(\mathrm{x})
$$

Using the assumption $x \alpha y \beta z=x \beta y \alpha z$ in the last relation, we get

$$
\begin{aligned}
& \sum_{i+j=n}\left(\operatorname{mak}_{\mathrm{i}}(\mathrm{y}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{x})-\mathrm{k}_{\mathrm{j}}(\mathrm{y}) \alpha \mathrm{m} \beta \mathrm{k}_{\mathrm{j}}(\mathrm{x})\right)-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{k}_{\mathrm{i}}(\mathrm{x}) \beta m \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{y})-\mathrm{k}_{\mathrm{i}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{y}) \alpha \mathrm{m} \\
& =\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}}\left(\operatorname{mak}_{\mathrm{i}}(\mathrm{y})-\mathrm{k}_{\mathrm{i}}(\mathrm{y}) \alpha m\right) \beta \mathrm{k}_{\mathrm{j}}(\mathrm{x})-\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{k}_{\mathrm{i}}(\mathrm{x}) \beta\left(m \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{y})-\mathrm{k}_{\mathrm{j}}(\mathrm{y}) \alpha \mathrm{m}\right)=0
\end{aligned}
$$

Which implies
$\sum_{i=1}^{n} m \alpha k_{j}(y)-k_{i}(y) \alpha m \in Z(M)$.
The last relation along with lemma 3.7 implies $m \in Z(M)$.

Lemma (3.12):

Let M be a semiprime Γ-ring satisfying the assumption $\mathrm{x} \alpha \mathrm{y} \beta \mathrm{z}=\mathrm{x} \beta \mathrm{y} \alpha \mathrm{z}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$. Then every Jordan higherK-centralizer of M maps $Z(M)$ into $Z(M)$.

Proof:

Let $\mathrm{m} \in \mathrm{Z}(\mathrm{M})$. Then
(14) $\mathrm{T}_{\mathrm{n}}(\operatorname{mox})=\mathrm{T}_{\mathrm{n}}(\operatorname{mox}+\mathrm{x} \alpha \mathrm{m})=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{m}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{x})+\mathrm{k}_{\mathrm{j}}(\mathrm{x}) \alpha \mathrm{t}_{\mathrm{i}}(\mathrm{m})$

Let $\mathrm{S}_{\mathrm{n}}(\mathrm{x})=2 \mathrm{~T}_{\mathrm{n}}(\mathrm{m} \alpha \mathrm{x})$. Then
$S_{n}(x \beta y+y \beta x)=2 T_{n}(m \alpha(x \beta y+y \beta x))=2 T_{n}(\max \beta y+m \alpha y \beta x)$.
Since $m \in Z(M)$ and $x \alpha y \beta z=x \beta y \alpha z$, one has
$S_{n}(x \beta y+y \beta x)=2 \mathrm{~T}_{\mathrm{n}}((\mathrm{x} \alpha \mathrm{m}) \beta \mathrm{y}+\mathrm{y} \beta(\mathrm{x} \alpha \mathrm{m}))$

$$
\sum_{i+j=n} 2 t_{i}(x \alpha m) \beta k_{j}(y)+2 k_{j}(y) \beta t_{i}(x \alpha m)=\sum_{i+j=n} S_{i}(x) \beta k_{j}(y)+k_{j}(y) \beta S_{i}(x) .
$$

Hence S_{n} is a Jordan higher K-centralizer. So (14) along with lemma 3.11.2013 $T_{n}(m) \in Z(M)$.

Theorem (3.13):

Every Jordan higher K-centralizer of a 2-torsion free semiprime Γ-ring M satisfying the assumption x $\alpha y \beta z$ $=\mathrm{x} \beta \mathrm{y} \alpha \mathrm{z}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$ is a higher K -centralizer.

Proof:

Suppose that T_{n} is a Jordan higher K-centralizer, then

$$
\begin{aligned}
T_{n}(x \alpha y+y \alpha x) & =\sum_{i+j=n} t_{i}(x) \alpha k_{j}(y)+k_{i}(y) \alpha t_{j}(x) \\
& =\sum_{i+j=n} k_{i}(x) \alpha t_{j}(y)+t_{j}(y) \alpha k_{j}(x)
\end{aligned}
$$

Replacing y by $x \beta y+y \beta x$ in the last relation we get

$$
\begin{aligned}
& \left.\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}} \mathrm{x} \beta \mathrm{y}+\mathrm{y} \beta \mathrm{x}\right)+\mathrm{k}_{\mathrm{i}}(\mathrm{x} \beta \mathrm{y}+\mathrm{y} \beta \mathrm{x}) \alpha \mathrm{t}_{\mathrm{j}}(\mathrm{x}) \\
& =\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x} \beta \mathrm{y}+\mathrm{y} \beta \mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{x})+\mathrm{k}_{\mathrm{j}}(\mathrm{x}) \alpha \mathrm{t}_{\mathrm{i}}(\mathrm{x} \beta \mathrm{y}+\mathrm{y} \beta \mathrm{x}) \\
& =\sum_{\mathrm{r}+\mathrm{s}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{r}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{y}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{x})+\mathrm{k}_{\mathrm{r}}(\mathrm{y}) \beta \mathrm{t}_{\mathrm{s}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{x})+\mathrm{k}_{\mathrm{j}}(\mathrm{x}) \alpha \mathrm{t}_{\mathrm{r}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{y})+\mathrm{k}_{\mathrm{j}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{s}}(\mathrm{y}) \beta \mathrm{t}_{\mathrm{r}}(\mathrm{x})
\end{aligned}
$$

Which implies

$$
\begin{aligned}
& \sum_{i+t+u=n} t_{i}(x) \alpha k_{t}(x) \beta k_{u}(y)+t_{i}(x) \alpha k_{t}(y) \beta k_{u}(x)+k_{t}(x) \beta k_{u}(y) \alpha t_{i}(x)+k_{t}(y) \beta k_{u}(x) \alpha t_{i}(x) \\
= & \sum_{r+s+j=n} t_{r}(x) \beta k_{s}(y) \alpha k_{j}(x)+k_{s}(y) \beta t_{r}(x) \alpha k_{j}(x)+k_{j}(x) \alpha t_{r}(x) \beta k_{s}(y)+k_{j}(x) \alpha k_{s}(y) \beta t_{r}(x)
\end{aligned}
$$

Using the assumption $x \alpha y \beta z=x \beta y \alpha z$, from the last relation, we get

$$
\begin{aligned}
& \sum_{i+t+u=n} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{t}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{u}}(\mathrm{y})+\mathrm{k}_{\mathrm{t}}(\mathrm{y}) \beta \mathrm{k}_{\mathrm{u}}(\mathrm{x}) \alpha \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \\
= & \sum_{\mathrm{r}+\mathrm{s}+\mathrm{j}=\mathrm{n}} \mathrm{k}_{\mathrm{s}}(\mathrm{y}) \beta \mathrm{t}_{\mathrm{r}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{x})+\mathrm{k}_{\mathrm{j}}(\mathrm{x}) \alpha \mathrm{t}_{\mathrm{r}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{s}}(\mathrm{y})
\end{aligned}
$$

So, we have
$\sum_{i+t+u=n}\left(t_{i}(x) \alpha k_{t}(x)-k_{t}(x) \alpha t_{i}(x)\right) \beta k_{u}(y)=\sum_{i+t+u=n} k_{u}(y)\left(t_{i}(x) \alpha k_{t}(x)-k_{t}(x) \alpha t_{i}(x)\right)$
That is, $\left[\mathrm{t}_{\mathrm{i}}(\mathrm{x}), \mathrm{k}_{\mathrm{t}}(\mathrm{x})\right]_{\alpha} \beta \mathrm{k}_{\mathrm{u}}(\mathrm{y})=\mathrm{k}_{\mathrm{u}}(\mathrm{y}) \beta\left[\mathrm{t}_{\mathrm{i}}(\mathrm{x}), \mathrm{k}_{\mathrm{t}}(\mathrm{x})\right]_{\alpha}$, which implies $\left[\mathrm{t}_{\mathrm{i}}(\mathrm{x}), \mathrm{k}_{\mathrm{t}}(\mathrm{x})\right] \in \mathrm{Z}(\mathrm{M})$.
Now we prove that $\left[\mathrm{t}_{\mathrm{i}}(\mathrm{x}), \mathrm{k}_{\mathrm{t}}(\mathrm{x})\right]_{\alpha}=0$.
Let $m \in Z(M)$, lemma 3.12 implies that $T_{n}(m) \in Z(M)$. Thus

$$
\begin{aligned}
2 \mathrm{~T}_{\mathrm{n}}(\operatorname{mox}) & =\mathrm{T}_{\mathrm{n}}(\mathrm{~m} \alpha \mathrm{x}+\mathrm{x} \alpha \mathrm{~m}) \\
& =\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{~m}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{x})+\mathrm{k}_{\mathrm{j}}(\mathrm{x}) \alpha \mathrm{t}_{\mathrm{i}}(\mathrm{~m}) \\
& =2 \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{~m})
\end{aligned}
$$

Which implies
(15) $\mathrm{T}_{\mathrm{n}}(\mathrm{m} \alpha \mathrm{x})=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{m})$

$$
=\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{~m}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{x})
$$

Now
$\left[\mathrm{t}_{\mathrm{i}}(\mathrm{x}), \mathrm{k}_{\mathrm{t}}(\mathrm{x})\right]_{\alpha} \beta \mathrm{k}_{\mathrm{u}}(\mathrm{m})=\mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{t}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{u}}(\mathrm{m})-\mathrm{k}_{\mathrm{t}}(\mathrm{x}) \alpha \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \beta \mathrm{k}_{\mathrm{u}}(\mathrm{m})$.
The last relation along with (15) implies
$\left[\mathrm{t}_{\mathrm{i}}(\mathrm{x}), \mathrm{k}_{\mathrm{t}}(\mathrm{x})\right]_{\alpha} \beta \mathrm{k}_{\mathrm{u}}(\mathrm{m})=0$
Since $\left[\mathrm{t}_{\mathrm{i}}(\mathrm{x}), \mathrm{k}_{\mathrm{t}}(\mathrm{x})\right]_{\alpha}$ itself is a contral element one has $\left[\mathrm{t}_{\mathrm{i}}(\mathrm{x}), \mathrm{k}_{\mathrm{t}}(\mathrm{x})\right]_{\alpha}=0$. Now

$$
\begin{aligned}
2 \mathrm{~T}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{x}) & =\mathrm{T}_{\mathrm{n}}(\mathrm{x} \alpha \mathrm{x}+\mathrm{x} \alpha \mathrm{x}) \\
& =\sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha{k_{j}}(\mathrm{x})+\mathrm{k}_{\mathrm{j}}(\mathrm{x}) \alpha \mathrm{t}_{\mathrm{i}}(\alpha) \\
& =2 \sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{t}_{\mathrm{i}}(\mathrm{x}) \alpha \mathrm{k}_{\mathrm{j}}(\mathrm{x}) \\
& =2 \sum_{\mathrm{i}+\mathrm{j}=\mathrm{n}} \mathrm{k}_{\mathrm{j}}(\mathrm{x}) \alpha \mathrm{t}_{\mathrm{i}}(\mathrm{x})
\end{aligned}
$$

That is, $T_{n}(x \alpha x)=\sum_{i+j=n} k_{j}(x) \alpha t_{i}(x)$.
Hence, T_{n} is a Jordan left higher K-centralizer. By theorem 3.10, T_{n} is a left higher K-centralizer.
Similarly, we can prove that T_{n} is a right higher K-centralizer. Therefore T_{n} is a higher K-centralizer.

References:

[1]. R.Awtar, Lie Ideals and Jordan Derivation of Prime Rings, Proc.Amer.Math.Soc., Vol.90, No.1, pp.9-14, 1984.
[2]. W.E.Barnes, On the Γ-Rings of Nobusawa, Pacific J.Math., 18 (1966), 411-422.
[3]. F.J.Jing, On Derivations of Г-Rings, QuFuShiFan Daxue Xuebeo Ziran Kexue Ban, Vol.13, No.4, pp.159-161, 1987.
[4]. B.E.Johnson and A.M.Sinclair, Continuity of Derivation and a Problem of Kaplasky, Amer.J.Math., 90(1968), 1067-1078
[5]. M.F.Hoque and A.C.Paul, On Centralizers of Semiprime Gamma Rings, International Mathematical Forum, 6(13)(2011), 627638.
[6]. A.H.Majeed and S.M.Salih, Jordan Higher Derivation on Prime Γ-Rings, College of Education, Conference, $16{ }^{\text {th }}$, AlMustansirhyah Univ., 2009.
7]. N.Nobusawa, On a Generalization of the Ring Theory, Osaka J. Math., (1964), 81-89
[8]. M.Sapanci and A.Nakajima, Jordan Derivations on Completely Prime Gamma Rings, Math. Japonica, 46(1)(1997), 47-51.
[9]. S.M.Salih, B.Majid, (U,M) Derivation Г-Rings, Education College Conference, Al-Mustansiriya University, 2012.
[10]. Z.Ullah and M.Anwar Chaudhary, on K-Centralizer of Semiprime Gamma Rings, Bahauddin Zakariya Univ.Multan, Pakistan, Vol.6, No.21, 2012.
[11]. B.Zalar, On Centralizers of Semiprime Ring, Comment. Math. Univ. Carolinae, 32(1991), 609-614

