L^{p} Inequalities Concerning Polynomials Having Zeros in Closed Interior of A Circle

K.K. Dewan ${ }^{1}$ C.M. Upadhye ${ }^{2}$
Department of Mathematics, Faculty of Natural Science, Jamia Milia Islamia (Central University), New Delhi110025 (INDIA)
Gargi College (University of Delhi), Siri Fort Road, New Delhi-1 10049 (INDIA)

Abstract: Let $p(z)=\sum_{j=0}^{n} a_{i} z^{j}$ be a polynomial of degree n and $p^{\prime}(z)$ be its derivative, then Zygmund [9] proved that

$$
\left(\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} \leq n\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}}, \quad r \geq 1
$$

In this paper we shall obtain similar type of inequalities in reverse order for the polynomials having r fold zeros at origin and rest of the zeros in $|z| \leq k, k \leq 1$.
Mathematics Subject Classification (2010): 30A10, 30C15, 30C10
Key words: Polynomials, Zeros, Polar derivative, Inequality

I. Introduction And Statement Of The Results

Let $p(z)$ be a polynomial of degree n and $p^{\prime}(z)$ its derivative. Then the following well known inequality is due to Bernstein [2].

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| \tag{1.1}
\end{equation*}
$$

L^{p} analogue of (1.1) was obtained by Zygmund [9]. He proved that
If $p(z)$ is a polynomial of degree n and $p^{\prime}(z)$ its derivative then for $r \geq 1$,

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} \leq n\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} \tag{1.2}
\end{equation*}
$$

In this paper we obtain integral mean estimates for polynomials having r fold zeros at origin and rest of the zeros in $|z| \leq k, k \leq 1$. For the same class of polynomials we shall also obtain L^{p} inequalities for polar derivative of a polyno mial.
THEOREM 1. Let $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}$ be a polynomial of degree n, having zero of order s at origin and rest of the zero in $|z| \leq k, k \leq 1$. Then for $r \geq 1$,
$\left[\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right]^{\frac{1}{r}} \geq\left\{n-(n-s) E_{K}\right\}\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}}$
where $E_{k}=k^{\mu} /\left[\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+k^{\mu} e^{i \theta}\right|^{r} d \theta\right]^{\frac{1}{r}}$ and $0 \leq s \leq n-\mu$.
Letting $r \rightarrow \infty$ in (1.3) and making use of the fact from analysis [7], [8] that

$$
\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \rightarrow \max _{0 \leq \theta \leq 2 \pi}\left|p\left(e^{i \theta}\right)\right| \quad \text { as } \quad r \rightarrow \infty
$$

we obtain the following inequality

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n+s k^{\mu}}{1+k^{\mu}} \max _{|z|=1}|p(z)| \tag{1.4}
\end{equation*}
$$

Next we obtain the following imp rovement of Theorem 1 which also generalizes a result due to Jain [5].
THEOREM 2. Let $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n$, be a polynomial of degree n, having all its zeros in $|z| \leq k, k \leq 1$, with a zero oforder s at origin. Then for β with $|\beta|<k^{n-s}$ and $r \geq 1$,

$$
\begin{align*}
& \left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)+\frac{s m}{k^{n}} \bar{\beta} e^{i(s-1) \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \tag{1.5}\\
& \quad \geq\left\{n-(n-s) c_{k}\right\}\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\frac{m}{k^{n}} \bar{\beta} e^{i s \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}}
\end{align*}
$$

where $m=\min _{|z|=k}|p(z)|, 0 \leq s \leq n-\mu$ and $c_{k}=k^{\mu} /\left[\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+k^{\mu} e^{i \theta}\right|^{r} d \theta\right]^{\frac{1}{r}}$.
For $\mu=1$ Theorem 2 reduces to a result due to Jain [5].
Letting $r \rightarrow \infty$ in (1.5) we obtain the following inequality
$\max _{|z|=1}\left|p^{\prime}(z)+\frac{s m}{k^{n}} \bar{\beta} z^{s-1}\right| \geq \frac{n+s k^{\mu}}{1+k^{\mu}} \max _{|z|=1}\left|p(z)+\frac{m}{k^{n}} \bar{\beta} z^{s}\right|$
where m is same as in Theorem 2 and $0 \leq s \leq n-\mu$.
By choosing argument of β suitably and letting $|\beta| \rightarrow k^{n-s}$ in (1.6) we get
COROLLARY 1. If $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}$ is a polynomial of degree $n, 1 \leq \mu \leq n$, having all zeros in $|z| \leq k, k \leq 1$, with a zero of order s at origin then
$\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n+s k^{\mu}}{1+k^{\mu}} \max _{|z|=1}|p(z)|+\frac{(n-s) m}{\left(1+k^{\mu}\right) k^{s}}$
where $m=\min _{|z|=k}|p(z)|$.
For $\mu=1$ inequality (1.7) improves upon a result proved by Aziz and Shah [1].
Let $D_{\alpha} P(z)$ denote the polar differentiation of the polynomial $P(z)$ of degree n with respect to the point α. Then
$D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z)$.
The polynomial $D_{\alpha} P(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative in the sense that $\lim _{\alpha \rightarrow \infty} \frac{D_{\alpha} p(z)}{\alpha}=p^{\prime}(z)$.
Now we obtain L^{p} inequality for the polar derivative of a polynomial. Our result generalizes a result due to Dewan et al. [4]. More precisely we prove:
THEOREM 3. If $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}$ is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$ with s-fold zeros at the origin, then for every real or complex number $\alpha \geq k^{\mu}$ and for each $r>0$,
$\left\{\int_{0}^{2 \pi}\left|D_{\alpha} p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \geq \frac{\left(|\alpha|-k^{\mu}\right)\left(n+s k^{\mu}\right)}{1+k^{\mu}}\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}}$.
If in (1.8) $r \rightarrow \infty$ we get the following result.
COROLLARY 2. If $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}$ is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, with s fold zeros at the origin, then for every real or complex number $\alpha \geq k^{\mu}$

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq \frac{\left(|\alpha|-k^{\mu}\right)\left(n+s k^{\mu}\right)}{1+k^{\mu}} \max _{|z|=1}|p(z)| . \tag{1.9}
\end{equation*}
$$

II. Lemmas

We will need following lemmas to prove our theorems.
LEMMA 1. If $p(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}, 1 \leq \mu \leq n$, is a polynomial of degree n, having no zeros in the disk $|z|<k, k \geq 1$, then
$k^{\mu}\left|p^{\prime}(z)\right| \leq\left|q^{\prime}(z)\right|$ for $|z|=1$.
The above lemma is due to Chan and Malik [3].
LEMMA 2. If $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n$, is a polynomial of degree n, having all its zero in $|z| \leq k \leq 1$, then
$\left|q^{\prime}(z)\right| \leq k^{\mu}\left|p^{\prime}(z)\right|$ for $|z|=1$.
PROOF OF LEMMA 2. Since all the zeros of $p(z)$ lie in $|z| \leq k \leq 1$, all the zeros of $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$ lie in $|z| \geq \frac{1}{k}, \frac{1}{k} \geq 1$. Hence applying Lemma 1 to the polynomial $q(z)$, we get inequality (2.2). This proves Lemma 2.
LEMMA 3. If $p(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}$ is a polynomial of degree n such that $p(z) \neq 0$ in $|z|<k, k \geq 1$, then for $r>0$,

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq n E_{r}\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \tag{2.3}
\end{equation*}
$$

where $E_{r}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|k^{\mu}+e^{i \theta}\right|^{r} d \theta\right\}^{\frac{-1}{r}}$ and $1 \leq \mu \leq n$.
The above lemma is due to Rather [6].

III. Proofs Of The Theorems

PROOF OF THEOREM 1. Let $p(z)=z^{s} h(z)$ where $h(z)$ is a polynomial of degree $n-s$, having all its zeros in $|z| \leq k, k \leq 1$ and $h(0) \neq 0$. Then

$$
\begin{equation*}
q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}=z^{n-s} \overline{h\left(\frac{1}{\bar{z}}\right)} \tag{3.1}
\end{equation*}
$$

is also a polynomial of degree $n-s$.
Now $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$ for $z=e^{i \theta}, 0 \leq \theta \leq 2 \pi$ gives

$$
\begin{equation*}
\left|q^{\prime}\left(e^{i \theta}\right)\right|=\left|n p\left(e^{i \theta}\right)-e^{i \theta} p^{\prime}\left(e^{i \theta}\right)\right| \tag{3.2}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
\left|q\left(e^{i \theta}\right)\right|=\left|p\left(e^{i \theta}\right)\right| \tag{3.3}
\end{equation*}
$$

The polynomial $q(z)$, given by (3.1) will have no zeros in $|z|<\frac{1}{k}, \frac{1}{k} \geq 1$. Applying Lemma 3 to $q(z)$ for $r \geq 1$, we have

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|q^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq(n-s) E_{k}\left\{\int_{0}^{2 \pi}\left|q\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \tag{3.4}
\end{equation*}
$$

where $E_{k}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{1}{k^{\mu}}+e^{i \theta}\right|^{r} d \theta\right\}^{-\frac{1}{r}}$. Now

$$
\left\{\int_{0}^{2 \pi}\left|n p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}}=\left\{\int_{0}^{2 \pi}\left|n p\left(e^{i \theta}\right)-e^{i \theta} p^{\prime}\left(e^{i \theta}\right)+e^{i \theta} p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}}
$$

By Min kowski's inequality for $r \geq 1$ we have

$$
\begin{align*}
& \left\{\int_{0}^{2 \pi} n\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \tag{3.5}\\
& \quad \leq\left\{\int_{0}^{2 \pi} n\left|p\left(e^{i \theta}\right)-e^{i \theta} p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}}+\left\{\int_{0}^{2 \pi}\left|e^{i \theta} p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}}
\end{align*}
$$

Using (3.2), (3.3) and (3.4) in (3.5) we get
$\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \geq\left(n-(n-s) E_{k}\right)\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}}$.
This completes the proof of Theorem 1.
PROOF OF THEOREM 2. Let $p(z)=z^{s} h(z)$, where $h(z)$ is a polynomial of degree $(n-s)$ having all its zeros in $|z| \leq k, k \leq 1$ and $h(0) \neq 0$. Then
$q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}=z^{n-s} \overline{h\left(\frac{1}{\bar{z}}\right)}$ (3.6)
is a polynomial of degree $(n-s)$.
The polynomial $q(z)$ given by (3.6) will have no zeros in $|z| \leq \frac{1}{k}, \frac{1}{k} \geq 1$. Now if
$m_{1}=\min _{|z|=\frac{1}{k}}|q(z)|$
then

$$
m_{1}=\min _{|z|=\frac{1}{k}}\left|z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}\right|=\frac{m}{k^{n}} .
$$

By Rouche's theorem the polynomial
$q(z)+m_{1} \beta z^{n-s}, \quad|\beta|<k^{n-s}$,
of degree $(n-s)$ will also no zero in $|z|<\frac{1}{k}, \frac{1}{k} \geq 1$. Hence by applying Lemma 3 to the polynomial $q(z)+m_{1} \beta z^{n-s}$ for $r \geq 1$ and $|\beta|<k^{n-s}$ we have

$$
\begin{align*}
& \left\{\int_{0}^{2 \pi}\left|q^{\prime}\left(e^{i \theta}\right)+\frac{m}{k^{n}}(n-s) \beta e^{i(n-s-1) \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \tag{3.7}\\
& \quad \leq(n-s) c_{k} \int_{0}^{2 \pi}\left|q\left(e^{i \theta}\right)+\frac{m}{k^{n}} \beta e^{i(n-s) \theta}\right|^{r} d \theta
\end{align*}
$$

where $c_{k}=k^{\mu} /\left[\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|1+k^{\mu} e^{i \alpha}\right|^{r} d_{\alpha}\right]^{\frac{1}{r}}$.
Now using (3.2) and (3.3) in the above inequality we get

$$
\begin{align*}
& {\left[\int_{0}^{2 \pi}\left|n p\left(e^{i \theta}\right)-e^{i \theta} p^{\prime}\left(e^{i \theta}\right)+\frac{\bar{\beta} m}{k^{n}}(n-s) e^{i s \theta}\right|^{r} d \theta\right]^{\frac{1}{r}}} \tag{3.8}\\
& \quad \leq(n-s) c_{k}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\frac{\bar{\beta} m}{k^{n}} e^{i s \theta}\right|^{r} d \theta\right)^{\frac{1}{r}}
\end{align*}
$$

Now by Minkowski's inequality for $r \geq 1$ and $|\beta|<k^{n-s}$, we have

$$
\begin{align*}
& n\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\frac{m}{k^{n}} \bar{\beta} e^{i s \theta}\right|^{r} d \theta\right)^{\frac{1}{r}} \tag{3.9}\\
& \quad \leq\left(\int_{0}^{2 \pi}\left|n p\left(e^{i \theta}\right)+\frac{m}{k^{n}} \bar{\beta}(n-s) e^{i s \theta}-e^{i \theta} p^{\prime}\left(e^{i \theta}\right)\right|^{r} d \theta\right)^{\frac{1}{r}} \\
& \quad+\left(\int_{0}^{2 \pi}\left|e^{i \theta} p^{\prime}\left(e^{i \theta}\right)+s \frac{m}{k^{n}} \bar{\beta} e^{i s \theta}\right|^{r} d \theta\right)^{\frac{1}{r}} .
\end{align*}
$$

Combining (3.8) and (3.9) we get

$$
\begin{aligned}
& \left(\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)+\frac{s m}{k^{n}} \bar{\beta} e^{i(s-1) \theta}\right|^{r} d \theta\right)^{\frac{1}{r}} \\
& \quad \geq\left[n-(n-s) c_{k}\right]\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\frac{m}{k^{n}} \bar{\beta} e^{i s \theta}\right|^{r} d \theta\right)^{\frac{1}{r}}
\end{aligned}
$$

which is the desired result. This completes the proof of the Theorem 2.
PROOF OF THEOREM 3. Since $p(z)$ has all its zeros in $|z| \leq k \leq 1$ with s-fold zeros at the origin, we can write

$$
p(z)=z^{s} h(z),
$$

where $h(z)$ is a polynomial of degree $n-s$ having all its zeros in $|z| \leq k \leq 1$.
Now for every real or complex nu mber α with $|\alpha| \geq k^{\mu}$, we have
$D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z)$.
Which implies
$\left|D_{\alpha} p(z)\right| \geq\left|\alpha p^{\prime}(z)\right|-\left|n p(z)-z p^{\prime}(z)\right|$.
Using (3.2) and Lemma 2 in (3.10) we get

$$
\begin{align*}
\left|D_{\alpha} p(z)\right| & \geq|\alpha|\left|p^{\prime}(z)\right|-\left|q^{\prime}(z)\right| \tag{3.10}\\
& \geq\left(|\alpha|-k^{\mu}\right)\left|p^{\prime}(z)\right| \quad \text { for }|z|=1
\end{align*}
$$

Inequality (3.11) in conjunction with (1.4) gives
$\left|D_{\alpha} p(z)\right| \geq\left(|\alpha|-k^{\mu}\right) \frac{n+s k^{\mu}}{1+k^{\mu}}|p(z)| \quad$ for $|z|=1$.
From (3.12) we deduce that for each $r>0$
$\left\{\int_{0}^{2 \pi}\left|D_{\alpha}\left(p e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \geq \frac{\left(|\alpha|-k^{\mu}\right)\left(n+s k^{\mu}\right)}{1+k^{\mu}}\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}}$
which proves the desired result.

References

[1] A.Aziz and W.M.Shah, Inequalities for a polynomial and its derivatives, Math. Ineq. Appl. 7(2004), 379-391.
[2] S. Bernstein, Lecons Sur Les Proprietes extremales et la meilleure approximation des fonctions analytiques d reele, Paris, 1926. W.
[3] T.C. Chan and M.A. Malik, on Erdos-Lax theorem, Proc. Indian Acad. Sci. 92(3) (1983), 191-193.
[4] K.K. Dewan et al., Some inequalities forthe polar derivative of a polynomial, Southeast Asian Bull. Math. 34(2010), 69-77.
[5] V.K. Jain, Integral inequalities for polynomials having a zero of order m at the origin, Glasnik Matematicki 37(57) (2002), 83-88.
[6] N.A. Rather, Extremal Properties and Location of the Zeros of Polynomials, Ph.D. Thesis, University of Kashmir, 1998.
[7] Rudin, Real and Complex Analysis, T ata McGraw-Hill Publishing Company (reprinted in India), 1977.
[8] A.E. Taylor, Introduction to Functional Analysis, John Wiley and Sons, Inc., New York, 1958.
[9] Zygmund, A remark on conjugate series, Proc. London Math. Soc. 34 (1932), 392-400.

