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Abstract:  In this paper some particular harmonic numbers n, where n divides σ(n) completely have been 

taken. Three types of numbers prime factorised as say, 𝑝𝑚𝑞, 2𝑘𝑝𝑚𝑞, 2𝑘𝑝1𝑝2 ……𝑝𝑚  have been discussed and 
some propositions have been developed to understand the properties of these type of numbers. It has been 

observed that harmonic numbers n having 𝑔. 𝑐. 𝑑.  𝑛, 𝜎 𝑛  = 𝑛 of the form 𝑝𝑞, 𝑝2𝑞, 𝑝𝑚𝑞 does not exist if p,q 

both of them are odd primes. Further some useful properties of the harmonic numbers of the form 2𝑘𝑝𝑚𝑞, for 
some values of m have been discussed with the help of some propositions. After that an algorithm has been 

proposed to get the numbers of the form  2𝑘𝑝1𝑝2 ……𝑝𝑚 , where n divides σ(n) completely. 
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I. Introduction 
 In 1948 Ore [9] introduced the concept of Harmonic numbers, and these numbers were named as Ore’s 

harmonic numbers(some 15 years later) by Pomerance[10].In general, the harmonic mean of positive numbers 

𝑎1 ,𝑎2 ,…… . . , 𝑎𝑘  is defined by 

                                                             
1

𝑎𝑖

𝑘
𝑖=1  

−1

 

 A positive integer n is said to be harmonic if the harmonic mean of its positive divisors 𝐻 𝑛 =
𝑛𝜏(𝑛)

𝜎(𝑛)
 is 

an integer, where 𝜏(𝑛) denotes the number of positive divisors  and σ(n) denotes the sum of the positive divisors 

of n. We call 1 the trivial harmonic number. A list of harmonic numbers less than 2.109 have been given by 

Cohen [2]. This have been extended by Goto and Okeya [5] which is up to 1014. If n is a harmonic divisor 

number then there are two possibilities (i) 𝑔. 𝑐. 𝑑.  𝑛,𝜎 𝑛  = 𝑛 or (ii) 𝑔. 𝑐.𝑑.  𝑛, 𝜎 𝑛  ≠ 𝑛.(i) implies that 

σ(n)=kn, where k is a positive integer. In fact if σ(n)=2n, then the numbers are called perfect numbers. Ore [9] 

proved that every perfect number is harmonic. But the converse is not true. For example, 140 is not perfect, but 

H(140)=5. Ore [4] conjectured that all harmonic numbers other than 1 must be even. 

 In the present  paper , we focus on those harmonic numbers which satisfies the property  (i). Some 

examples of this kind of numbers are 6,28,496,672,8128,30240,…….In section 2, some properties of the 

numbers of the form 𝑝𝑚𝑞 where p,q are any prime numbers have been discussed. In section 3, the type of 

numbers have been extended to the form 2𝑘𝑝𝑚𝑞. In section 4, the numbers have been further extended to the 

form 2𝑘𝑝1𝑝2 ……𝑝𝑚 . In fact in this section a search technique have been obtained to get the numbers of the 

form 𝑔. 𝑐.𝑑.  𝑛, 𝜎 𝑛  = 𝑛, where 𝑛 = 2𝑘𝑝1𝑝2 ……𝑝𝑚 . 

 

II. Some properties of  harmonic numbers having 𝒈. 𝒄.𝒅.  𝒏,𝝈 𝒏  = 𝒏 of the form 𝒑𝒎𝒒 
Theorem 2.1   The only harmonic divisor number of the form 𝒑𝒒, where 𝒑 and 𝒒 are prime numbers and 

𝒈. 𝒄.𝒅.  𝒏,𝝈 𝒏  = 𝒏, is 𝟔. 
 

Proof: Let 𝑛 = 𝑝𝑞, where 𝑝,𝑞  are two prime numbers. Now 𝜎 𝑛 = 1 + 𝑝 + 𝑞 + 𝑝𝑞. If n divides σ(n) 

completely then 1 + 𝑝 + 𝑞 + 𝑝𝑞 = 𝑘𝑝𝑞, for some number k. Since n   is a harmonic divisor number so 

𝑘|𝜏 𝑛 = 4. So the possible values of k are  1,2,4 . Since  1 + 𝑝 + 𝑞 ≠ 0 therefore 𝑘 ≠ 1. The other possible 

equations are  1 + 𝑝 + 𝑞 = 𝑝𝑞 or  1 + 𝑝 + 𝑞 = 3𝑝𝑞. The possible values of 𝑝 are 
1+𝑞

𝑞−1
,

1+𝑞

3𝑞−1
.    Now 1 + 𝑞 >

3𝑞 − 1 => 2𝑞 < 2, which is not possible. Hence the only possible solutions are 2,3. Therefore 6 is the only 

harmonic divisor number of the form 𝑝𝑞. 
 

Theorem 2.2   The only harmonic divisor number of the form 𝒑𝟐𝒒, where 𝒑 𝒂𝒏𝒅 𝒒  are  prime numbers such 

that 𝒈. 𝒄.𝒅.  𝒏,𝝈 𝒏  = 𝒏 is 𝟐𝟖. 



                         Some aspects of Harmonic Numbers which divide the sum of its positive divisors 

www.iosrjournals.org                                                        40 | Page 

Proof:  Here 𝜎 𝑛 = 1 + 𝑝 + 𝑝2 + 𝑞 + 𝑝𝑞 + 𝑝2𝑞 and  𝑛 = 6 . To satisfy the condition 𝑛|𝜎(𝑛) we have 

𝑞 =
1+𝑝+𝑝2

−1−𝑝−𝑝2 +𝑘𝑝2 , where𝜎(𝑛) = 𝑛𝑘. The possible values of k are 1,2,3,6. Clearly k cannot be 1.As 𝜎(𝑛) = 𝑛𝑘 

implies 𝜎 𝑛 = 𝑛 𝑖. 𝑒.  1 + 𝑝 + 𝑝2 + 𝑞 + 𝑝𝑞 + 𝑝2𝑞 = 𝑝2𝑞, 𝑖. 𝑒. 1 + 𝑝 + 𝑝2 + 𝑞 + 𝑝𝑞 = 0, which is not possible 

as the LHS is greater than 0. Let             𝑘𝑝2 −  1 + 𝑝 + 𝑝2 = 𝑡 ……………… 1   
and                                                           1 + 𝑝 + 𝑝2 = 𝑞𝑡……………………… .  2      
Where t is some positive integer. Adding (1) and (2), 𝑘𝑝2 =  𝑞 + 1 𝑡. Firstly, we consider that both 𝑝 𝑎𝑛𝑑 𝑞  

are odd primes. From (2) we have 𝑞 𝑎𝑛𝑑 𝑡  are odd numbers as 𝑞𝑡 must be odd, which is because, 1 + 𝑝 + 𝑝2 is 

odd. Now from (1) 𝑘𝑝2 must be even as the RHS is odd. As 𝑝 is an odd prime, 𝑘 must be even. Hence the 

possible values of 𝑘 are 2,6 

Case (i).    𝑘 = 2 

We have                        𝑘𝑝2 =  𝑞 + 1 𝑡 
                                    ⇒  2𝑝2 =  𝑞 + 1 𝑡 
                                    ⇒  2.𝑝. 𝑝 =  𝑞 + 1 𝑡 
 Then the possible equations are 𝑞 + 1 = 2𝑝2 , 𝑡 = 1  or    𝑞 + 1 = 2𝑝, 𝑡 = 𝑝 

If   𝑞 + 1 = 2𝑝2 , 𝑡 = 1  , then equation (2) implies 1 + 𝑝 + 𝑝2 =  2𝑝2 − 1 . 1  ⇒  𝑝2 − 𝑝 − 2 = 0 ,which has 

no prime solutions. .Similarly, if  1 + 𝑝 + 𝑝2 = (2𝑝 − 1)𝑝  then  𝑝2 − 2𝑝 − 1 = 0 , which does not give any 

prime values of p. Therefore  𝑘  cannot be 2. 

Case (ii).    𝑘 = 6   

We have                    𝑘𝑝2 =  𝑞 + 1 𝑡 
                                    ⇒  6𝑝2 =  𝑞 + 1 𝑡 
                                    ⇒  2.3.𝑝.𝑝 =  𝑞 + 1 𝑡 
 The possible values of  𝑞, 𝑡  are  2,3𝑝2 ,  6,𝑝2 ,  2𝑝, 3𝑝 ,  2𝑝2 , 3 ,  6𝑝,𝑝 ,  6𝑝2 , 1 . Clearly any of 

the above pair does not satisfy the equation (2) for odd prime 𝑝. Next we assume that 𝑝 is an even prime. From 

equation (2), we have 1 + 𝑝 + 𝑝2 = 𝑞𝑡 ⇒ 𝑞𝑡 = 7. Since 𝑞 is prime the only possibility is 𝑞 = 7. Hence the 

number becomes 𝑛 = 22 . 7.Also we have   𝜏 𝑛 = 6 and 𝜎 𝑛 = 56.Therefore 𝜎 𝑛 = 2𝑛 and 𝐻 𝑛 = 3. 

Similarly if we consider 𝑞 is even then equation (2) is not satisfied as the LHS is odd and the RHS is even. 

Hence the theorem. 

In fact  the above theorem may be generalised to some extent and may be stated as follows: 

 

Theorem  2.3    If 𝒏 is a harmonic number of the form 𝒑𝒎𝒒, where 𝒑,𝒒 are prime numbers and 𝒎 is a 

positive integer  such that 𝒈. 𝒄.𝒅.  𝒏,𝝈 𝒏  = 𝒏 then 𝑯 𝒏 =
𝝉(𝒏)

𝟐
 

Proof: Since 𝑛|𝜎(𝑛) and 𝑛 = 𝑝𝑚𝑞 , therefore 𝑞 can be expressed as 

                              𝑞 =
 𝑝𝑖𝑖=𝑚
𝑖=0

𝑘𝑝𝑚− 𝑝𝑖𝑖=𝑚
𝑖=0

  

Let                        𝑘𝑝𝑚 − 𝑝𝑖 = 𝑡 ……………………… (3)𝑖=𝑚
𝑖=0  

And                        𝑝𝑖 = 𝑞𝑡…………………………… . . (4)𝑖=𝑚
𝑖=0    

Where t is a particular positive integer .Adding (3) and (4),   we have 𝑘𝑝𝑚 =  𝑞 + 1 𝑡 
Again 

                                                           𝑞 =
 𝑝𝑖𝑖=𝑚
𝑖=0

𝑘𝑝𝑚  −   𝑝𝑖𝑖=𝑚
𝑖=0

 > 1 

                                                         ⇒ 2 𝑝𝑖𝑖=𝑚  
𝑖=0 > 𝑘𝑝𝑚  

                                                        ⇒  2 
𝑝𝑚 +1−1

𝑝−1
 > 𝑘𝑝𝑚  

                                                        ⇒ 𝑘 < 
2(𝑝𝑚 +1−1)

𝑝𝑚 (𝑝−1)
 

                                                        ⇒  𝑘 <  
2(𝑝−

1

𝑝𝑚
)

(𝑝−1)
 

                                                        ⇒  𝑘 < 2  
𝑝

𝑝−1
−

1

𝑝𝑚 (𝑝−1)
  

                                                       ⇒  𝑘 ≤ 2 

So 𝑘 is either 1 or  2. 

If  𝑘 = 1, then from equation (3),we have 

                                                       𝑝𝑚 − 𝑝𝑖 = 𝑡𝑖=𝑚
𝑖=0  

                                                         𝑝𝑚 − 𝑝𝑖 − 𝑝𝑚 = 𝑡𝑖=𝑚−1
𝑖=0  

                                                        − 𝑝𝑖 = 𝑡𝑖=𝑚−1
𝑖=0  

Which is not possible as the LHS is negative and RHS is positive. Therefore 𝑘 must be 2. i.e.𝐻 𝑛 =
𝜏(𝑛)

2
 . 

Hence the theorem is proved. 
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 In fact, it has been observed by Pomerance [10] and Callan [7] that the only harmonic numbers of the 

form 𝑝𝑎𝑞𝑏  are perfect numbers. 

Theorem 2.4   There is no perfect number of the form 𝒑𝟑𝒒, where 𝒑,𝒒 are odd primes. 

Proof:  Let  𝑛 = 𝑝3𝑞 then  𝜎 𝑛 =  1 + 𝑝 + 𝑝2 + 𝑝3  1 + 𝑞 . Since we are considering the perfect number 

,therefore  𝜎 𝑛 = 2𝑛.That is  1 + 𝑝 + 𝑝2 + 𝑝3  1 + 𝑞 = 2𝑝3𝑞. 

Or                                  
1+𝑝+𝑝2 +𝑝3

𝑝3
  

1+𝑞

𝑞
 = 2……………………… . . (5) 

 Suppose if possible  𝑝| 1 + 𝑝 + 𝑝2 + 𝑝3 . Obviously  𝑝| 𝑝 + 𝑝2 + 𝑝3 . Therefore, we have  𝑝|( 1 +
𝑝+𝑝2+𝑝3−𝑝+𝑝2+𝑝3). i.e. 𝑝|1, which is not possible. Hence 𝑝∤(1+𝑝+𝑝2+𝑝3). Therefore the only possibility 

is 𝑝3| 1 + 𝑞  and 𝑞| 1 + 𝑝 + 𝑝2 + 𝑝3 . 2 being a prime number the only possibilities are  (i) 2𝑝3 = 1 + 𝑞 and 

𝑞 = 1 + 𝑝 + 𝑝2 + 𝑝3 . But second one is not possible as the LHS is odd and the RHS is even. and (ii) 2𝑞 = 1 +
𝑝 + 𝑝2 + 𝑝3 and  𝑝3 = 1 + 𝑞.Again the second one is not possible as the LHS is odd and the RHS is even 
.Hence the Result.  

The above theorem may be generalized as: 

 

Theorem 2.5    There is no perfect number of the form 𝒑𝒎𝒒, where p and q are odd primes and 𝒎 is an odd 

numbers. 

Proof:  Let 𝑛 = 𝑝𝑚𝑞 then  𝜎 𝑛 =   𝑝𝑖𝑖=𝑚
𝑖=0  (1 + 𝑞). Since we considering the perfect number therefore 

𝜎 𝑛 = 2𝑛.That is   𝑝𝑖𝑖=𝑚
𝑖=0   1 + 𝑞 = 2 𝑝𝑚𝑞 

Or                    
  𝑝𝑖𝑖=𝑚

𝑖=0   1+𝑞 

𝑝𝑚 𝑞
 = 2..........................................................(6) 

 Suppose, if possible𝑝|  𝑝𝑖𝑖=𝑚
𝑖=0  . Obviously 𝑝|  𝑝𝑖𝑖=𝑚

𝑖=1  .Therefore, we have  𝑝|  𝑝𝑖𝑖=𝑚
𝑖=0  −

  𝑝𝑖𝑖=𝑚
𝑖=1  . i.e. 𝑝|1, which is not possible. Hence  𝑝 ∤.  𝑝𝑖𝑖=𝑚

𝑖=0  . Therefore the only possibility is 𝑝𝑚 |1 + 𝑞 and  

𝑞|  𝑝𝑖𝑖=𝑚
𝑖=0  . 2 being a prime number the possibilities are  (i) 2𝑝𝑚 = 1 + 𝑞 and  𝑞 =   𝑝𝑖𝑖=𝑚

𝑖=0  .But second one 

is not possible, as the LHS is odd and the RHS  is even. (ii)  2𝑞 =   𝑝𝑖𝑖=𝑚
𝑖=0  and  𝑝𝑚 = 1 + 𝑞, again second one 

is not possible as the LHS is odd and the RHS is even  and so the result. Theorem 2.4 is a particular case  when 

m=3.   

                 We now state that “There is no harmonic number of the form 𝒑𝒎𝒒, where p and q are odd 

primes and 𝒎 is an odd number such that 𝒈. 𝒄.𝒅.  𝒏,𝝈 𝒏  = 𝒏. " 

 

III. Some properties of the harmonic numbers having 𝒈. 𝒄.𝒅.  𝒏,𝝈 𝒏  = 𝒏 of the form 

𝟐𝒌𝒑𝒎𝒒 

     In this section we are trying to find the existence of some harmonic numbers of the form 2𝑘𝑝𝑚  , for 
small values of m. 

Theorem 3.1   Let the number be of the form 𝒏 = 𝟐𝒌𝒑 and  let 𝒈. 𝒄.𝒅.  𝒏,𝝈 𝒏  = 𝒏, then there exists at 

least one 𝒏 such that 𝑯 𝒏 =
𝝉(𝒏)

𝟐
  

Proof:  If 𝑛 = 2𝑘𝑝 then  𝜎 𝑛 =  2𝑖  (1 + 𝑝)𝑖=𝑘
𝑖=0 . Since𝜎 𝑛 = 𝑛𝑘1, for some number k1 . We have  

                                                                    𝑛𝑘1  =  2𝑖  (1 + 𝑝)𝑖=𝑘
𝑖=0  

                                                                  2𝑘𝑝𝑘1  =  2𝑖  (1 + 𝑝)𝑖=𝑘
𝑖=0  

 

𝑘1 =
1 + 𝑝

𝑝
  

2𝑘+1 − 1

2𝑘
  

 

Let 𝐻 𝑛  be the harmonic mean divisors of n. Then 𝑘1𝐻 𝑛 = 𝜏(𝑛) 

Hence                             𝜏 𝑛 =  𝐻 𝑛 
1+𝑝

𝑝
  

2𝑘+1−1

2𝑘
  

                                     1 + 𝑘 2 =  𝐻 𝑛 
1+𝑝

𝑝
  

2𝑘+1−1

2𝑘
  

                                     1 + 𝑘 =  𝐻 𝑛 
1+𝑝

𝑝
  

2𝑘+1−1

2𝑘+1
 .................................................(7) 

We observed that if   𝑝 = 2𝑘+1 − 1 then     𝐻 𝑛 =
𝜏(𝑛)

2
. 

With a small program in MATHEMATICA software it can be easily seen that some of the values of  k +1 , for 

which     𝑝 = 2𝑘+1 − 1  is a prime number are  

{2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217,4253,4423,9689,9941}. However it has 

been observed that if   𝑝 = 2𝑘+1 − 1 is a prime number then 𝑘 + 1 itself must be a prime number. These 
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numbers are called Mersene primes and the numbers of the form  2𝑘(2𝑘+1 − 1) are called perfect numbers. So 
far  there are 48 Mersene primes . 

Theorem 3.2  There does not exist any harmonic number of the form  𝒏 = 𝟐𝒌𝒑𝟐  for which 

𝒈. 𝒄.𝒅.  𝒏,𝝈 𝒏  = 𝒏 ,where 𝒌 is a positive integer and 𝒑 is an odd prime. 

Proof:  For  𝑛 = 2𝑘𝑝2 ,  we have  𝜎 𝑛 =  2𝑘+1 − 1 (1 + 𝑝 + 𝑝2). Then  

                                                        
𝜎(𝑛)

𝑛
=

 2𝑘+1−1 (1+𝑝+𝑝2 )

2𝑘𝑝2  

Now   2𝑘 ∤ (2𝑘+1 − 1) and   2𝑘 ∤ (1 + 𝑝 + 𝑝2), as 𝑝 is an odd prime. Hence 1 + 𝑝 + 𝑝2 becomes odd. Hence 
the theorem. 

The above theorem is possible as 1 + 𝑝 + 𝑝2 becomes odd. So this will happen till  𝑝𝑖  is odd for some values 

of  𝑖, in fact if 𝑖  is even. So we can state the following result: 

 

Theorem 3.3   There does not exists any harmonic number of the form  𝟐𝒌𝒑𝟐𝒙  of which 𝒈. 𝒄.𝒅.  𝒏,𝝈 𝒏  =

𝒏 where 𝒌,𝒙  are  positive integers and 𝒑 is an odd prime. 

Theorem 3.4     There is no harmonic numbers up to  𝟏𝟎𝟕𝟔 of the form 𝟐𝒌𝒑𝟑  , where 𝒌 is a positive integer 

and 𝒑 is odd prime. 

Proof:  Let  𝑛 = 2𝑘𝑝3   . Then 𝜎 𝑛 =  2𝑘+1 − 1  1 + 𝑝 + 𝑝2 + 𝑝3  and  𝜏 𝑛 = 4(𝑘 + 1). As 

𝑔. 𝑐. 𝑑.  𝑛,𝜎 𝑛  = 𝑛 we may assume 𝜎 𝑛 = 𝑛𝑘1 where 𝑘1 is an integer. 

Then                                   𝑘1 =
 2𝑘+1−1 (1+𝑝+𝑝2 +𝑝3 )

2𝑘  𝑝3   is also an integer. 

Now  𝑝|(𝑝 + 𝑝2 + 𝑝3), if we assume 𝑝|(1 + 𝑝 + 𝑝2 + 𝑝3) then  𝑝|(1 + 𝑝 + 𝑝2 + 𝑝3) − (𝑝 + 𝑝2 + 𝑝3) i.e. 𝑝|1, 

which is not possible. Hence  𝑝 ∤  1 + 𝑝 + 𝑝2 + 𝑝3  i.e.  𝑝3 ∤ (1 + 𝑝 + 𝑝2 + 𝑝3). Therefore the only 

possibility is  𝑝3|(2𝑘+1 − 1). As  .  2𝑘 ∤ (2𝑘+1 − 1) so 2𝑘 |(1 + 𝑝 + 𝑝2 + 𝑝3).  

Let                                       𝑥𝑝3 = 2𝑘+1 − 1...............................................................(8) 

And                                        1 + 𝑝 + 𝑝2 + 𝑝3 = 𝑦2𝑘 ..................................................(9) 

for some positive integer 𝑥, 𝑦. It is clear that for large value of 2𝑘+1 − 1 , if 𝑝 is comparatively very small then 

the equation (9) is not satisfied for 𝑦 ≥ 1. We have searched the numbers of the form 2𝑘+1 − 1 for 1 ≤ 𝑘 ≤
251 in MATHEMATICA for which the value of 𝑝 has been found to be very very small. Hence all these 

numbers  does not satisfy the second equation. Hence  there is no number of the form 2𝑘𝑝3   for 𝑘 ≤ 251.i.e. 

there is no harmonic numbers up to  1076  of the form 2𝑘𝑝3 .   
 

Theorem 3.5    Let the number be of the form 𝒏 = 𝟐𝒌𝒑𝒒 and  let 𝒈. 𝒄.𝒅.  𝒏,𝝈 𝒏  = 𝒏 then there exists no 𝒏 

such that 𝑯 𝒏 =
𝝉(𝒏)

𝟐𝒙
,𝒙 ≥ 𝟏 

Proof:  For 𝑛 = 2𝑘𝑝𝑞, we have 𝜎 𝑛 =  2𝑘+1 − 1  1 + 𝑝 (1 + 𝑞) and  𝜏 𝑛 = 4(𝑘 + 1). Let 𝜎 𝑛 = 𝑛𝑘1 

where 𝑘1a positive integer. Therefore  

                                                         𝑘1 =
 2𝑘+1−1  1+𝑝 (1+𝑞)

2𝑘𝑝𝑞
   

as 𝑘1𝐻 𝑛 = 𝜏(𝑛) 

                                                            1 + 𝑘 4 =  𝐻 𝑛 (
1+𝑝

𝑝
)(

1+𝑞

𝑞
)  

2𝑘+1−1

2𝑘
  

Or                                                         1 + 𝑘 2 =  𝐻 𝑛 (
1+𝑝

𝑝
)(

1+𝑞

𝑞
)  

2𝑘+1−1

2𝑘+1
  

For   𝐻 𝑛 =
𝜏(𝑛)

2
,  

  
1 + 𝑝

𝑝
  

1 + 𝑞

𝑞
  

2𝑘+1 − 1

2𝑘+1
 = 1 

 Or                                                                  
1+𝑝+𝑞+𝑝𝑞

𝑝𝑞
=

2𝑘+1

2𝑘+1−1
 

Or                                                    ( 2𝑘+1 − 1) 1 + 𝑝 + 𝑞 = 𝑝𝑞.............................................................(10) 
 

 If 𝑝 = 𝑥(2𝑘+1 − 1)  for 𝑥 > 1 then  𝑞 is a composite number. Same is true for 𝑞.Hence the only 

possibility is   𝑝 or  𝑞  must be of the form  2𝑘+1 − 1. But if 𝑝 = 2𝑘+1 − 1 then from the equation (10), we have 

1 + 𝑝 + 𝑞 = 𝑞 𝑖. 𝑒.𝑝 = −1 is not possible. Same is true for q also. Thus 𝐻 𝑛 =
𝜏(𝑛)

2
 is not possible for all 𝑝 

and 𝑞 odd primes. Now we can consider the case of 𝐻 𝑛 =
𝜏(𝑛)

2𝑥
,𝑥 > 1. Then we have  

𝜎(𝑛)

2𝑥𝑛
= 1.This implies 

that 
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1 + 𝑝

𝑝
  

1 + 𝑞

𝑞
  

2𝑘+1 − 1

2𝑘+𝑥
 = 1 

                                                                     
1+𝑝+𝑞

𝑝𝑞
+ 1  

2𝑘+1−1

2𝑘+𝑥
 = 1 

                                                                 
1+𝑝+𝑞

𝑝𝑞
  

2𝑘+1−1

2𝑘+𝑥
 = 1 −  

2𝑘+1−1

2𝑘+𝑥
  

                                                      1 + 𝑝 + 𝑞  2𝑘+1 − 1 =  2𝑘+𝑥 − 2𝑘+1 + 1 𝑝𝑞 

                                                1 + 𝑝 + 𝑞  2𝑘+1 − 1 =  2𝑘+1 2𝑥−1 − 1 + 1 𝑝𝑞.....................................(11) 

For  𝑥 ≥ 2,  2𝑘+1 2𝑥−1 − 1 + 1 > (2𝑘+1 − 1). Also 𝑝𝑞 >  1 + 𝑝 + 𝑞 . Hence the RHS of the equation (11) 
is greater than the LHS , which is not possible. Hence the  theorem. 

 

Theorem 3.6  If a number is of the form 𝒏 = 𝟐𝒌𝒑𝟐𝒒  with   𝒈. 𝒄.𝒅.  𝒏,𝝈 𝒏  = 𝒏 and  𝑯 𝒏 =
𝝉(𝒏)

𝟐
 , then 𝒏 

does not exist. 

Proof:   For  𝑛 = 2𝑘𝑝2𝑞 we have 𝜎 𝑛 = 2𝑘+1 1 + 𝑝 + 𝑝2 (1 + 𝑞) and  𝜏 𝑛 = 3(𝑘 + 1)2. Let 𝜎 𝑛 = 𝑛𝑘1 

where 𝑘1 is a positive integer. Then we have  

 2𝑘+1 − 1  1 + 𝑝 + 𝑝2  1 + 𝑞 = 2𝑘𝑝2𝑞𝑘1 

Or                                                                   
2𝑘+1−1

2𝑘
  

1+𝑝+𝑝2

𝑝2
  

1+𝑞

𝑞
 = 𝑘1 

Again                                                            𝐻 𝑛 =
𝑛𝜏 (𝑛)

𝜎(𝑛)
=

𝜏(𝑛)

𝑘1
  

Or                                                            
2𝑘+1−1

2𝑘
  

1+𝑝+𝑝2

𝑝2
  

1+𝑞

𝑞
 =

𝜏(𝑛)

𝐻(𝑛)
  

Or                                                          𝐻(𝑛)  
2𝑘+1−1

2𝑘
  

1+𝑝+𝑝2

𝑝2
  

1+𝑞

𝑞
 = 3 1 + 𝑘 2  

Or                                                       𝐻(𝑛)  
2𝑘+1−1

2𝑘+1
  

1+𝑝+𝑝2

𝑝2
  

1+𝑞

𝑞
 = 3 1 + 𝑘   ...............................(12) 

A necessary condition that   𝐻(𝑛)  
2𝑘+1−1

2𝑘+1
  

1+𝑝+𝑝2

𝑝2
  

1+𝑞

𝑞
  is an integer. 

Suppose we want to make 𝐻 𝑛 = 3(1 + 𝑘)  

Then                                                          
2𝑘+1−1

2𝑘+1
  

1+𝑝+𝑝2

𝑝2
  

1+𝑞

𝑞
 = 1 ....................................................(13) 

As 2𝑘+1 − 1, 1 + 𝑝 + 𝑝2 are odd numbers so only possibility is  2𝑘+1|1 + 𝑞. 

Let  𝑞 = 𝑥2𝑛 − 1, where 𝑛 ≥ 𝑘 + 1 

If  𝑛 > 𝑘 + 1 then the expression (13) becomes 

                          2𝑘+1 − 1  
1+𝑝+𝑝2

𝑝2
  

𝑥2𝑦

𝑞
 = 1  for some  𝑦 ≥ 0                                ..............................(14) 

As  𝑝 and 𝑞 are odd primes the only possibility is 𝑦 = 0  i.e. 𝑛 = 𝑘 + 1 

Hence the expression (14) becomes 

                                             2𝑘+1 − 1  
1+𝑝+𝑝2

𝑝2
  

𝑥

𝑞
 = 1                     ....................................................(15) 

 

For 𝑥 ≥ 1, 𝑞 does not divide 2𝑘+1 − 1, hence the only possibility is  𝑞|(1 + 𝑝 + 𝑝2)     

Let   𝑞𝑡 = 1 + 𝑝 + 𝑝2  for some positive integer 𝑡, then the expression (15) becomes  

                                                            2𝑘+1 − 1 
𝑡𝑥

𝑝2 = 1                 ...........................................................(16)           

As          𝑥 > 1,  and  2𝑘+1 − 1 > 1, the only possibility is 𝑡 = 1 and       𝑥 = 2𝑘+1 − 1 = 𝑝                  

Now                               𝑞 = 1 + 𝑝 + 𝑝2 => 𝑥2𝑘+1 − 1 = 1 + 𝑝 + 𝑝2 

                               => 𝑝2𝑘+1 − 𝑝 = 2 + 𝑝2   => 𝑝 2𝑘+1 − 1 = 2 + 𝑝2 

i.e. 𝑝2 = 2 + 𝑝2 , which is not possible. 

Now , we consider 𝑥 = 1. then  𝑞 = 2𝑘+1 − 1. Therefore the equation (16) becomes    2𝑘+1 − 1 
𝑡

𝑝2 = 1                 

If 𝑡 = 1 then  𝑝2 = 2𝑘+1 − 1 = 𝑞.Therefore   𝑞𝑡 = 1 + 𝑝 + 𝑝2 implies  𝑞 = 1 + 𝑝 + 𝑝2 , which gives    𝑝 = −1 
,which is not possible. 

 Next we consider that  𝑡 > 1. Again there are two possibilities, 𝑡 = 𝑝 and  𝑡 = 𝑝2. If 𝑡 = 𝑝2 then 

2𝑘+1 − 1 = 1. This implies that 𝑘 = 0 which is not acceptable .Lastly we have 𝑡 = 𝑝. Then 2𝑘+1 − 1 = 𝑝 i.e. 

𝑝 = 𝑞.So 𝑞𝑡 = 1 + 𝑝 + 𝑝2 implies  𝑝2 = 1 + 𝑝 + 𝑝2 i.e. 𝑝 = −1, not possible .Thus there exists no number of 

the form 𝑛 = 2𝑘𝑝2𝑞  such that  H(n) = 3(𝑘 + 1) =
𝜏(𝑛)

2
. The above theorem may be generalized on the power of 

of p and can be written as follows:  
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Theorem  3.7   Let the number be of the form 𝒏 = 𝟐𝒌𝒑𝟐𝒙𝒒  where 𝒙 is any positive integer and 𝒑,𝒒 are odd 

primes.  Let 𝒈. 𝒄.𝒅.  𝒏,𝝈 𝒏  = 𝒏  and  𝑯 𝒏 =
𝝉(𝒏)

𝟐
 , then 𝒏 does not  exist. 

Proof:  If 𝐻 𝑛 =
𝜏(𝑛)

2
 then we have  

                                             
2𝑘+1−1

2𝑘+1
  

 𝑝𝑖𝑖=2𝑥
𝑖=0

𝑝2𝑥
  

1+𝑞

𝑞
 = 1 ............................................................(17      

As 2𝑘+1 − 1 and  𝑝𝑖𝑖=2𝑥
𝑖=0   are odd  numbers, so 2𝑘+1|1 + 𝑞. 

Let  𝑞 = 𝑥12𝑛 − 1,𝑤ℎ𝑒𝑟𝑒 𝑛 ≥ 𝑘 + 1   

If 𝑛 > 𝑘 + 1   then the expression (17) becomes     

                                      2𝑘+1 − 1  
 𝑝𝑖𝑖=2𝑥
𝑖=0

𝑝2𝑥
 
𝑥  2𝑦

𝑞
= 1 , for some 𝑦 ≥ 1           .............................(18) 

For 𝑥 ≥ 1, 𝑞  does not  divide  2𝑘+1 − 1, so  the only possibility is   𝑞| 𝑝𝑖𝑖=2𝑥
𝑖=0 . Let  𝑞𝑡 =  𝑝𝑖𝑖=2𝑥

𝑖=0  , then the 

equation (18) becomes  

                                         2𝑘+1 − 1 
𝑡𝑥1

𝑝2𝑥 = 1             

The only possibility is       2𝑘+1 − 1 = 𝑝𝑦1 , 𝑡 = 𝑝𝑦2 ,   𝑥1 = 𝑝𝑦3 ,𝑤ℎ𝑒𝑟𝑒 𝑦1 + 𝑦2 + 𝑦3 = 2𝑥  and  𝑦𝑖 ≥ 0, 𝑖 =
1,2,3 

Now                                                  𝑞𝑡 =  𝑝𝑖𝑖=2𝑥
𝑖=0                

                                           =>  (𝑥12𝑘+1 − 1)𝑝𝑦2 =  𝑝𝑖𝑖=2𝑥
𝑖=0  

                                          =>  𝑝𝑦2+𝑦3  2𝑘+1 − 𝑝𝑦2+𝑦3 = 1 + 𝑝𝑦2 +   𝑝𝑖𝑖=2𝑥
𝑖=1,𝑖≠𝑦2+𝑦3

 

         

                                         =>  𝑝𝑦2+𝑦3  (2
𝑘+1 − 1) = 1 + 𝑝𝑦2 +   𝑝𝑖𝑖=2𝑥

𝑖=1,𝑖≠𝑦2+𝑦3
 

                                         =>  0 = 1 + 𝑝𝑦2 +   𝑝𝑖𝑖=2𝑥−1
𝑖=1,𝑖≠𝑦2+𝑦3

    .....................................................(19) 

This is not possible .Hence the theorem. 

 In theorem 3.6 we have seen that there is no harmonic number of the form  𝑛 = 2𝑘𝑝2𝑞  such that 𝑛  

completely divides  𝜎 𝑛 .However there are some harmonic numbers of this form such that 𝑛 does not divide 

completely 𝜎 𝑛 . Let  𝑞 = 2𝑘+1 − 1 . Then, we have  

                                                                          
𝐻 𝑛 𝜎(𝑛)

𝑛
= 𝜏(𝑛) 

i.e.                                       𝐻(𝑛)  
2𝑘+1−1

2𝑘+1
  

1+𝑝+𝑝2

𝑝2
  

1+𝑞

𝑞
 = 3 1 + 𝑘    

i.e.                                                        𝐻(𝑛)  
1+𝑝+𝑝2

𝑝2
 = 3 1 + 𝑘     

As  𝑔. 𝑐. 𝑑.  𝑝2, 1 + 𝑝 + 𝑝2 = 1, the only possibility is  3 1 + 𝑘 = 𝑦(1 + 𝑝 + 𝑝2). Taking  𝑦 = 3  some of the 

numbers are  21232 213 − 1 ,  23052 231 − 1 , taking  𝑦 = 1  some of the numbers are   2126192 2127 − 1 ,  

260132 261 − 1 , 21872 219 − 1 . 
 

IV. Some properties of harmonic numbers having 𝒈. 𝒄.𝒅.  𝒏,𝝈 𝒏  = 𝒏  of the form  

𝟐𝒌𝒑𝟏𝒑𝟐…… .𝒑𝒎 

Theorem 4.1  Let the number be of the form 𝒏 = 𝟐𝒌𝒑𝟏𝒑𝟐…… .𝒑𝒎. Let one of them is 𝟐𝒌+𝟏 − 𝟏 then  

𝝈 𝒏 ≠ 𝒌𝒏,  where  𝒌 = 𝟐𝒙,𝒙 being odd and 𝒑𝒊 are odd prime, 𝒊 = 𝟏,𝟐,… . . ,𝒎 
Proof:  We have  𝜎 𝑛 =  2𝑘+1 − 1  (1 + 𝑝)𝑖

𝑚
𝑖=1 . Let 𝑝1 = 2𝑘+1 − 1. If possible, let 𝜎 𝑛 = 2𝑥𝑛 where 𝑥 is 

an odd number. We have  

                                                                   
2𝑘+1−1

2𝑘+1
 

1+𝑝𝑖

𝑝𝑖
= 𝑥𝑚

𝑖=1  

Or                                                                
1+𝑝𝑖

𝑝𝑖
= 𝑥𝑚

𝑖=1   ...............................................................(20) 

 This is not possible because the numerator part of LHS of (20) is even number and denominator part 

being odd the LHS becomes even. But the RHS is odd. This theorem can be generalized further to give the 

following theorem: 

  

Theorem 4.2   Let the number be of the form 𝒏 = 𝟐𝒌𝒑𝟏𝒑𝟐…… .𝒑𝒎, where all 𝒑’s  are distinct odd primes, 

then    𝝈 𝒏 ≠ 𝟐𝒏. 
Proof: Without loss of generality, we consider that  𝑝1 < 𝑝2 …………… . 𝑝𝑚 . 

 Now                                                 
𝜎(𝑛)

𝑛
=

2𝑘+1−1

2𝑘+1
 

1+𝑝𝑖

𝑝𝑖
= 𝑘1(𝑠𝑎𝑦)𝑚

𝑖=1   ...................................(21) 

 Where 𝑘is a positive integer. Now  𝑝𝑚 ∤  1 + 𝑝𝑖 ,∀ 𝑖 = 1,2,… . . ,𝑚 as 𝑝𝑚 > 𝑝𝑖 , ∀𝑖 = 1,2,… . . ,𝑚− 1. 

Therefore only possibility is  𝑝𝑚 |2𝑘+1 − 1. Let  2𝑘+1 − 1 = 𝑟𝑚𝑝𝑚 ,    𝑟𝑚 ≥ 1. 



                         Some aspects of Harmonic Numbers which divide the sum of its positive divisors 

www.iosrjournals.org                                                        45 | Page 

So                              
𝜎(𝑛)

𝑛
=  

2𝑘+1−1

2𝑘+1   
1+𝑝𝑚

𝑝𝑚
  

1+𝑝𝑖

𝑝𝑖

𝑚−1
𝑖=1  

                                          =  
𝑟𝑚 𝑝𝑚

2𝑘
   

2𝑘+1−1+𝑟𝑚

𝑟𝑚 𝑝𝑚
  

1+𝑝𝑖

𝑝𝑖

𝑚−1
𝑖=1  

                                         =
1

2𝑘
(2𝑘+1 − 1 + 𝑟𝑚 )  

1+𝑝𝑚−1

𝑝𝑚−1
 .  

1+𝑝𝑖

𝑝𝑖

𝑚−2
𝑖=1 .....................................(22) 

Now  𝑝𝑚−11 ∤  1 + 𝑝𝑖 ,∀ 𝑖 = 1,2,… . . ,𝑚− 1 as 𝑝𝑚−1 > 𝑝𝑖 , ∀𝑖 = 1,2,… . . ,𝑚− 2. 

So  the  possibility is  𝑝𝑚−1|2𝑘+1 − 1 + 𝑟𝑚 . Let  2𝑘+1 − 1 + 𝑟𝑚 = 𝑟𝑚−1𝑝𝑚−1,  .Then the equation (22) can be 

written as  

                                  
𝜎(𝑛)

𝑛
  =

1

2𝑘
(𝑟𝑚−1𝑝𝑚−1)  

2𝑘+1−1+𝑟𝑚+𝑟𝑚−1

𝑟𝑚−1𝑝𝑚−1
     

1+𝑝𝑖

𝑝𝑖

𝑚−2
𝑖=1    

Continuing this process at the 𝑗th stage , where the remaining primes are 𝑝1,𝑝2 …………… . 𝑝𝑗 . 

We have                
𝜎(𝑛)

𝑛
      =

1

2𝑘
(𝑟𝑗𝑝𝑗 )  

2𝑘+1−1+ 𝑟𝑗
𝑚
𝑖=𝑗

𝑟𝑗 𝑝𝑗
  

1+𝑝𝑖

𝑝𝑖

𝑗−1

𝑖=1  

and               𝑟𝑗 −1𝑝𝑗−1 = 2𝑘+1 − 1 +  𝑟𝑗
𝑚
𝑖=𝑗    . Therefore  at  the m-th stage we have                                  

                              
𝜎(𝑛)

𝑛
   =

1

2𝑘
 2𝑘+1 − 1 +  𝑟𝑖

𝑚
𝑖=1   ...................................................(23) 

If possible, let 
𝜎(𝑛)

𝑛
= 2, then the equation (23) becomes    2𝑘+1 − 1 +  𝑟𝑖

𝑚
𝑖=1   =2𝑘+1   .So  𝑟𝑖

𝑚
𝑖=1 = 1,which is 

not possible .Hence the result. 

 

In fact the above theorem helps us to search numbers of the form 2𝑘𝑝1𝑝2…… . 𝑝𝑚 ,where 𝑝1,𝑝2,…… . ,𝑝𝑚  are 

distinct odd primes and 𝑝1<𝑝2 <,…… . , < 𝑝𝑚  (say), which are harmonic of course 𝑔. 𝑐. 𝑑.  𝑛, 𝜎 𝑛  =
𝑛 .Following are the steps: 

 Step 1. We chose the number  2𝑘+1 − 1 and get its factor.It is desired to have the prime factors whose 

power is one .However  if a prime factor is 2 or ,say 𝑞𝑚 ,𝑚 ≥ 1 occurs which is also a factor of (𝑘 + 1), then it 

may be allowed. We take the highest prime say 𝑝𝑚  ,as stated in the theorem, let 2𝑘+1 − 1 = 𝑟𝑚𝑝𝑚  

 Step 2. We calculate the prime factor of 2𝑘+1 − 1 + 𝑟𝑚 . In fact the prime factors of 2𝑘+1 − 1  except   

𝑝𝑚  will also be the prime factors of   2𝑘+1 − 1 + 𝑟𝑚 .Hence the prime factors are never lost at any stage. Again it 

is desired to have the prime factors whose power is one. However if a prime factor is 2 or ,say 𝑞𝑚 ,𝑚 ≥ 1 occurs 

which is also a factor of (𝑘 + 1),then it may be allowed. 

 Step 3. We repeat the above process and at the j-th stage we consider the prime factors of 2𝑘+1 − 1 +
 𝑟𝑖
𝑚
𝑖=𝑗  , again we choose the highest prime provided in the factorization all the prime factor other than prime 

factors of (k+1) are square free. We end the process when 2𝑘+1 − 1 +  𝑟𝑖
𝑚
𝑖=𝑗    has only prime factor 2.Harmonic 

mean H(n) of these numbers will be of the form 𝑞1𝑞2… . . 𝑞𝑖2
𝑗 , for some 𝑗 where 𝑞1,𝑞2, … . . , 𝑞𝑖 are some of the 

prime factors of (k+1). Since the searching process is dependent only on 𝑘, it takes less time to search the 

numbers of the said form out of a wide range of numbers. It has been observed that there is no numbers of the 

said form whose harmonic mean is (𝑘 + 1)2𝑥  for some 𝑥 up to 10100. 
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