The proof of Riemann Hypothesis

Jyotirmoy Biswas

7,Sreepur Lane, P.O-Haltu,KOLKATA-700078
The condition for which $\left(\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{Z}}\right)^{2}+\left(\sum_{n=1}^{\infty} \frac{1}{(2 n)^{Z}}\right)^{2}=0$ where Z is a complex number reveals those points Z for which the functions $\left(\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{Z}}\right)+i\left(\sum_{n=1}^{\infty} \frac{1}{(2 n)^{Z}}\right)$ and $\left(\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{Z}}\right)-i\left(\sum_{n=1}^{\infty} \frac{1}{(2 n)^{Z}}\right)$ have zeroes.Finally,by direct analysis we can find zeroes of Riemann zeta funtion .

I. Introduction

1.1 Riemann hypothesis

Theorem 1 (Riemann hypothesis) All non-trival zeroes of Riemann zeta function defined by $\zeta(Z)=\sum_{n=1}^{\infty} \frac{1}{n^{Z}}$ where Z is a complex number, lie on the line $Z=\left(\frac{1}{2}+i y\right)$.

1.21

Since $\left(\sum_{n=1}^{\infty} \frac{1}{(2 n)^{Z}}\right)=\frac{1}{2^{Z}}\left[\left(\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{Z}}\right)+\left(\sum_{n=1}^{\infty} \frac{1}{(2 n)^{Z}}\right)\right]$, Therefore,

$$
\begin{equation*}
\left(2^{Z}-1\right)\left(\sum_{n=1}^{\infty} \frac{1}{(2 n)^{Z}}\right)=\left(\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{Z}}\right) \tag{1}
\end{equation*}
$$

Consequently,

$$
\left(\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{Z}}\right)^{2}+\left(\sum_{n=1}^{\infty} \frac{1}{(2 n)^{Z}}\right)^{2}=0
$$

Implies, $\left[\left(2^{Z}\right)^{2}-(2)\left(2^{Z}\right)+2\right]\left(\sum_{n=1}^{\infty} \frac{1}{(2 n)^{Z}}\right)^{2}=0$
Implies, either
$\left(\sum_{n=1}^{\infty} \frac{1}{(2 n)^{Z}}\right)=0$
or $\left[\left(2^{Z}\right)^{2}-(2)\left(2^{Z}\right)+2\right]=0$ or Both. Let us assume first $\left(\sum_{n=1}^{\infty} \frac{1}{(2 n)^{Z}}\right) \neq 0$ Then, $2^{Z}=1 \pm i$ Implies, $2^{Z}=\sqrt{2}(e) \frac{(8 k \pm 1)(\pi)(i)}{4}$, Where, k, is any positive integer including zero. Implies, Z lie on the line $Z=\frac{1}{2}+\left[\frac{(8 k \pm 1)(\pi)(i)}{(4 \ln 2)}\right]$ When, any point Z_{1} liesonthe line $Z=\frac{1}{2}+\left[\frac{(8 k+1)(\pi)(i)}{(4 \ln 2)}\right]$ It follows from eq(1.2.1.1),

$$
\begin{align*}
& \left.2^{\prime} z_{1}\right)=1+i \\
& \left(\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)}\right)-(i)\left(\sum_{n=1}^{\infty} \frac{1}{\left.(2 n)^{(} z_{1}\right)}\right)=0 \tag{2}
\end{align*}
$$

Similarly,If any point Z_{2} lies on the line $Z=\frac{1}{2}+\left[\frac{(8 k-1)(\pi)(i)}{(4 \ln 2)}\right]$ Then,it follows from eq (1.2.1.1),

$$
\left.2^{(} z_{2}\right)=1-i
$$

Consequently,

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{2}\right)}\right)+i\left(\sum_{n=1}^{\infty} \frac{1}{\left.(2 n)^{(} z_{2}\right)}\right)=0 \tag{3}
\end{equation*}
$$

But, We want something more. We wish to show that
1.32

If any point

$$
z_{1}
$$

lies on the line

$$
Z=\left(\frac{1}{2}+\left[\frac{(8 k+1)(\pi)(i)}{(4 \ln 2)}\right]\right)
$$

and another point

$$
z_{2}
$$

lies on the line

$$
Z=\left(\frac{1}{2}+\left[\frac{(8 k-1)(\pi)(i)}{(4 \ln 2)}\right]\right)
$$

Then, modulas of $\left|\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)}\right|=\left|\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{2}\right)}\right|=\sigma$, where σ tends to zero.
But before showing this, let us show that four common values of all infinitely many valued function
$\left.(e)^{[} \frac{(i)(\theta)(\ln p)}{\ln 2}\right]$ are $(-1), 1$ and $\pm i$ where P is any odd prime taken arbitrarily.
Since

$$
\begin{aligned}
& \frac{1}{(e)^{t}-1}+\frac{1}{2}= \\
& \frac{1}{2}\left(\frac{(e)^{t}+1}{(e)^{t}-1}\right) \\
& =\frac{(i)}{2} \cot \left(\frac{1}{2} i t\right) \\
& =\frac{1}{t}+(2 t) \sum_{n=1}^{\infty} \frac{1}{t^{2}+4 n^{2}(\pi)^{2}}
\end{aligned}
$$

If $t=2(\pi)(k)(i)+\frac{(\ln p)(i)(\theta)}{\ln 2}$
where k is any positive integerand $k \in(0,1,2, \ldots)$,
then as k tends to ∞, it follows, $\frac{1}{\left.(e)^{[} 2(\pi)(k) i+\frac{(\ln p)(i)(\theta)}{\ln 2}\right]-1}+\frac{1}{2}=0$ Consequently,
$\left.(e)^{[} 2(\pi)(k)(i)+\frac{(\ln p)(i)(\theta)}{\ln 2}\right]=-1$
Since, $(e)^{2(\pi)(k) i}=1$ So it follows from eqution 1.3.2.1 that one of the values of

$$
(e) \frac{(i)(\theta)(\ln p)}{\ln 2}=-1
$$

Obviously then, chooseing suitable θ we can arrive at the values $\pm i$ and 1 . Since the matter plays a key role in what follows, an example will not be out of place here.Let us consider the many valued function
$(\ln 3)(\pi)(i)$
(e) $4 \ln 2$. Taking the value of $(\ln 3)$ and $(\ln 2)$ upto 9 decimal and using De Moivre's Theorem we find

Obviously then, when $n=448120313$,

$$
(e)^{\frac{(\ln 3)(\pi)(i)}{4 \ln 2}}=(-i)
$$

When $n=198120313$,then

$$
(e) \frac{(\ln 3)(\pi)(i)}{4 \ln 2}=1
$$

when $n=948120313$,then

$$
(\ln 3)(\pi)(i)
$$

(e) $4 \ln 2=i$
when $n=698120313$,then

$$
(\ln 3)(\pi)(i)
$$

(e) $4 \ln 2=-1$

$$
(\ln P)(\pi)(i)
$$

Actually,among infinitely many values, these four values are common to all (e) $4 \ln 2 \quad$, where p is any
Actually,among infinitely many values, these four values are common to all (e) $4 \ln 2 \quad$, where p is any odd prime taken arbitrarily. Now since,

$$
\left(\frac{1}{1-\frac{1}{p^{2}}}\right)=\frac{p^{z}}{P^{z}-1}
$$

So,the function $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{Z}}$ may be regarded as the rational function of two functions $\psi(z)$ and $\phi(z)$ i.e

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{z}}=\frac{\psi(z)}{\phi(z)}
$$

where, $z=x+i y, p_{n}$ denotes the nth prime and

$$
\begin{aligned}
& \psi(\mathrm{z})= \\
& {\left[{ }_{\mathrm{n}}^{\mathrm{n}} \mathrm{P}^{\mathrm{x}}(\mathrm{e})^{\left(\ln \mathrm{p}_{\mathrm{n}}\right)(\mathrm{y})(\mathrm{i})}\right]}
\end{aligned}
$$

and

$$
\begin{aligned}
& \varphi(\mathrm{z})= \\
& {\left[\mathrm{n}_{\mathrm{n}} \mathrm{P}^{\mathrm{x}}(\mathrm{e})^{(\ln \mathrm{p} \mathbf{n})(\mathrm{y})(\mathrm{i})]-1}\right.} \\
& \mathbf{n}=2
\end{aligned}
$$

So, it is not necessary that the branch of multivalued functions $\psi(z)$ and $\phi(z)$ have to be same all the time, In other words the value of $(e)^{\left(\ln p_{n}\right)(y)(i)}$ may be different for $\psi(z)$ and $\phi(z)$, If all

$$
(e)^{\frac{(\pi)(i)(\ln p)}{4 \ln 2}}= \pm(i)
$$

and if p_{n} denotes the nth prime then

$$
\begin{align*}
\left(\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)}\right) & =\prod_{n=2}^{\infty} \frac{1}{\left(1-\frac{1}{p_{n}^{Z_{1}}}\right)} \\
& =\prod_{n=2}^{\infty} \frac{1}{\left(1+\frac{ \pm i}{\sqrt{p_{n}}}\right)} \tag{7}
\end{align*}
$$

and

$$
\begin{align*}
\left(\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{2}\right)}\right) & =\prod_{n=2}^{\infty} \frac{1}{\left(1-\frac{1}{p_{n}^{Z_{2}}}\right)} \\
& =\prod_{n=2}^{\infty} \frac{1}{\left(1-\frac{ \pm i}{\sqrt{p_{n}}}\right)} \tag{8}
\end{align*}
$$

Obviously then,

$$
\begin{align*}
\left|\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)}\right| & =\left|\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{2}\right)}\right| \\
& =\prod_{n=2}^{\infty} \frac{1}{\sqrt{\left(1+\frac{1}{p_{n}}\right)}} \tag{9}
\end{align*}
$$

Since,

$$
\begin{equation*}
\prod_{n=2}^{\infty} \frac{1}{\left(1+\frac{1}{p_{n}}\right)} \tag{10}
\end{equation*}
$$

$$
\begin{align*}
& \times \prod_{n=2}^{\infty} \frac{1}{\left(1-\frac{1}{p_{n}}\right)} \tag{11}\\
& =\prod_{n=2}^{\infty} \frac{1}{\left(1-\frac{1}{p_{n}^{2}}\right)} \tag{12}\\
& =\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \tag{13}\\
& =\frac{(\pi)^{2}}{8} \tag{14}
\end{align*}
$$

And

$$
\begin{equation*}
\prod_{n=2}^{\infty} \frac{1}{\left(1-\frac{1}{p_{n}}\right)}=\frac{(\ln n)-\Upsilon}{2} \tag{15}
\end{equation*}
$$

Where

$$
\Upsilon \quad \text { is } \quad \text { EULER'S }
$$

CONSTANT.
Obviously
then, from eqations $(1.3 .2,6),(1.3 .2 .7),(1.3 .2 .8),(1.3 .2 .11)$ and (1.3.2.12) it follows,

$$
\begin{align*}
& \prod_{n=2}^{\infty} \frac{1}{\sqrt{\left(1+\frac{1}{p_{n}}\right)}}= \tag{16}\\
& \frac{\pi}{2 \sqrt{(\ln n)-\Upsilon}}
\end{align*}
$$

Consequently, when n tends to ∞ then $\ln n \rightarrow \infty$ so $\frac{\pi}{2 \sqrt{(\ln n)-\Upsilon}} \rightarrow \sigma$, where σ tends to zero. Therefore, from equations (1.3.2.6) and (1.3.2.13) it is clear that

$$
\begin{align*}
\left|\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)}\right| & =\left|\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{2}\right)}\right| \tag{17}\\
& =\sigma
\end{align*}
$$

If all

$$
e^{\frac{(\ln p)(\pi)(i)}{4 \ln 2}}=-1
$$

then since,

$$
\begin{align*}
& \left(\frac{1+\frac{1}{\sqrt{p}}}{\sqrt{\left(1+\frac{1}{P}\right)}}\right)^{2}= \tag{19}\\
& 1+\frac{2 \sqrt{p}}{P+1}
\end{align*}
$$

So,

$$
\begin{aligned}
& \prod_{n=2}^{\infty} \frac{1}{\sqrt{\left(1+\frac{1}{P_{n}}\right)}}=\sigma> \\
& \prod_{n=2}^{\infty} \frac{1}{1+\frac{1}{\sqrt{P_{n}}}} \\
& \text { When all } e^{\frac{(\ln P)(\pi)(i)}{4 \ln 2}=1 \text { then dividing equation (1.3.2.12) by inequality }(1.3 .2 .17) \text { it follows }}
\end{aligned}
$$

$$
\begin{aligned}
& \prod_{n=2}^{\infty} \frac{1}{1-\frac{1}{\sqrt{P_{n}}}}> \\
& \frac{(\ln n)-\Upsilon}{2}
\end{aligned}
$$

In otherwords, $\left|\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)}\right|=\left|\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{2}\right)}\right| \rightarrow \infty$

$$
(\ln p)(\pi)(i)
$$

But if in this case,the value of (e) $\quad 4 \ln 2 \quad$ forthe function $\psi(z)$ be taken as +1 for the points Z_{1} or Z_{2} and -1 for the function $\phi(z)$, then it can be proved easily that $\left|\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)}\right|=\left|\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{2}\right)}\right| \rightarrow \sigma$ where σ tends to zero.In otherwords, the function $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{Z}}$ is convergent on the real axis. So far we have considered those cases when all $e^{\frac{(\ln P(\pi)(i)}{4 \ln 2}}$ is $\pm i$ or (-1), but it may happens that for some finite number of primes(we denote any such primeby p_{d}) the value of $e^{\frac{\left(\ln p_{d}\right)(\pi)(i)}{4 \ln 2}}$ is different from the rest. But since $\prod_{d=d_{1}}^{d=d_{k}}\left(\frac{1}{1-\frac{1}{\left.\left(p_{d}\right)^{(} Z_{1}\right)}}\right)$ or $\prod_{d=d_{1}}^{d=d_{k}}\left(\frac{1}{1-\frac{1}{\left.\left(p_{d}\right)^{(} Z_{2}\right)}}\right) \quad$ is bounded ,so it can be proved easily that $\left|\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)}\right|=\left|\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{2}\right)}\right| \rightarrow \sigma$ This completes proof of our assertion.

1.43

It is clear from our above discussion that if $Z=\frac{1}{t}+i \theta$, where $0<\left(\frac{1}{t}\right)<1$ then $\zeta(Z)$ is convergent as because

$$
\begin{aligned}
& |\zeta(Z)| \\
& \left(\left|\sum_{n=1}^{\infty} \frac{1}{(2 n)^{Z}}\right|+\left|\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{Z}}\right|\right) \leq(m \sigma)
\end{aligned}
$$

where m is some positive finite real number. Consequently, $\zeta(Z)$ is analytic on the right half plane i, e $R(z)>0$. We have already told that Since,

$$
\left(\frac{1}{1-\frac{1}{P^{Z}}}\right)=\left(\frac{P^{Z}}{P^{Z}-1}\right)
$$

there is a possibility that in case of odd prime P, forany of $\left(\frac{P^{Z}}{P^{Z}-1}\right)$ the value of $\left(P^{Z}\right)$ of the numerator may be different from that of the denominator, as because $e^{(\ln p)(i)(\theta)}$ is infinitely many-valued. Let us explore such possibility for the point z_{1} or z_{2}. Suppose,for any factor of $\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)}$, for the $\left.P^{(} z_{1}\right)$ of the $(\ln p)(\pi)(i))$
numerator, the value of $e \quad 4 \ln 2=-1$ but for the $\left.P^{(} z_{1}\right)$ ofthe denominator,the value of $(\ln P)(\pi)(i)$
$e^{4 \ln 2}=(\pm i)$ Then,

$$
\begin{align*}
& \frac{\left.P^{(} z_{1}\right)}{\left.P^{(} z_{1}\right)-1}= \\
& \frac{ \pm i}{1+\frac{ \pm i}{\sqrt{P}}} \tag{21}
\end{align*}
$$

Consequently,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)}=(\pm i) \sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)} \tag{22}
\end{equation*}
$$

Consequently, When $\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)}=-i \sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)}$, then for equation (1.2.1.2)

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)}=-\sum_{n=1}^{\infty} \frac{1}{\left.(2 n)^{(} z_{1}\right)} \tag{23}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\zeta\left(z_{1}\right)=0 \tag{24}
\end{equation*}
$$

When $\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)}=+i \sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)}$, then for equation (1.2.1.2)

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)}-\sum_{n=1}^{\infty} \frac{1}{\left.(2 n)^{(} z_{1}\right)}\right)=0 \tag{25}
\end{equation*}
$$

In otherwords, Dirichlet eta function becomes zero. Arguments are almost similar for z_{2}. On the otherhand, if none of the value of $\left.P^{(} z_{1}\right)$ or $\left.P^{(} z_{2}\right)$ of the numerator is different from that of the denominator, then for z_{1}, $\zeta\left(z_{1}\right) \neq 0 \quad$ but $\quad \sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{1}\right)}-i \sum_{n=1}^{\infty} \frac{1}{\left.(2 n)^{(} z_{1}\right)}=0 \quad$ and \quad for $\quad z_{2}, \quad \zeta\left(z_{2}\right) \neq 0 \quad$ but $\sum_{n=1}^{\infty} \frac{1}{\left.(2 n-1)^{(} z_{2}\right)}+i \sum_{n=1}^{\infty} \frac{1}{\left.(2 n)^{(} z_{2}\right)}=0$ Thus all non-trival roots of Riemann zeta function as well as roots of Dirichlet eta function lie on the line $Z=\frac{1}{2}+\left[\frac{(8 k \pm 1)(\pi)(i)}{4 \ln 2}\right]$ and this completes the proof of Riemann Hypothesis.

References

[1] KONRAD KNOPP.THEORY OF FUNCTIONS,5TH Edition.NEW YORK.DOVER PUBLICATIONS.
[2] JOHN B.CONWAY.FUNCTIONS OF ONE COMPLEX VARIABLE,2nd Edition.NAROSA PUBLISHING HOUSE PVT LTD.
[3] J.N.SHARMA.FUNCTIONS OF A COMPLEX VARIABLE,4th Edition.Krishna Prakashan Media(P) Ltd.

