Pythagorean Triangle and Special Pyramidal Numbers

M. A. Gopalan ${ }^{1}$, V. Sangeetha ${ }^{2}$, Manju Somanath ${ }^{3}$
${ }^{1}$ Department of Mathematics,Srimathi Indira Gandhi College,Trichy-2,India
${ }^{2,3}$ Department of Mathematics,National College, Trichy-1,India

Abstract: Patterns of Pythagorean triangle, where, in each of which either a leg or the hypotenuse is a pentagonal pyramidal number and Centered hexagonal pyramidal number, in turn are presented.
Keywords: Pythagorean triangles, pentagonal pyramidal,centered hexagonal pyramidal.

I Introduction

The method of obtaining three non-zero integers α, β and γ under certain relations satisfying the equation $\alpha^{2}+\beta^{2}=\gamma^{2}$ has been a matter of interest to various mathematicians [1,2,3].In [4-12], special Pythagorean problems are studied.In this communication, we present yet another interesting Pythagorean problem.That is, we search for patterns of Pythagorean triangles where in each of which, either a leg or the hypotenuse is represented by a pentagonal pyramidal number and centered hexagonal pyramidal number, in turn.

II Notation

P_{n}^{m} - m-gonal pyramidal number of rank n
$C P_{n}^{m}$ - centered m-gonal pyramidal number of rank n
$t_{m, n}$ - polygonal number of rank n.

III Method of Analysis

Let (m, n, k) represent a triple of non-zero distinct positive integers such that

$$
m=(k+1) n
$$

Let $P(\alpha, \beta, \gamma)$ be the Pythagorean triangle whose generators are m, n. Consider

$$
\alpha=2 m n ; \beta=m^{2}-n^{2} ; \gamma=m^{2}+n^{2} .
$$

It is observed that, for suitable choices of n, either a leg or hypotenuse of the Pythagorean triangle P is represented by a pentagonal pyramidal number and centered hexagonal pyramidal number ,in turn.Different choices of n along with the corresponding sides of the Pythagorean triangle are illustrated below
Choice 3.1
Let $n=4 k+3$.
The corresponding sides of the Pythagorean triangle are

$$
\begin{aligned}
& \alpha=32 k^{3}+80 k^{2}+66 k+18 \\
& \beta=16 k^{4}+56 k^{3}+57 k^{2}+18 k \\
& \gamma=16 k^{4}+56 k^{3}+89 k^{2}+66 k+18
\end{aligned}
$$

Note that $\alpha=P_{n}^{5}$
Choice 3.2

$$
\text { Let } n=2 k^{2}+4 k+3
$$

The corresponding sides of the Pythagorean triangle are

$$
\begin{aligned}
& \alpha=8 k^{5}+40 k^{4}+88 k^{3}+104 k^{2}+66 k+18 \\
& \beta=4 k^{6}+24 k^{5}+60 k^{4}+80 k^{3}+57 k^{2}+18 k \\
& \gamma=4 k^{6}+24 k^{5}+68 k^{4}+112 k^{3}+113 k^{2}+66 k+18
\end{aligned}
$$

Note that $\gamma=P_{n}^{5}$
Note
It is worth mentioning here that, for the following two choices of m, n given by (i) $n=4 k, m=k(n+1)$ and (ii) $n=2 k^{3}-3, m=k n$ the sides α and β represent P_{n}^{5} respectively.

Choice 3.3

$$
\text { Let } n=2(k+1)
$$

The corresponding sides of the Pythagorean triangle are

$$
\begin{aligned}
& \alpha=8 k^{3}+24 k^{2}+24 k+8 \\
& \beta=4 k^{4}+16 k^{3}+20 k^{2}+8 k \\
& \gamma=4 k^{4}+16 k^{3}+28 k^{2}+24 k+8
\end{aligned}
$$

Note that $\alpha=C P_{n}^{6}$

Choice 3.4

$$
\text { Let } n=k(k+2)
$$

The corresponding sides of the Pythagorean triangle are

$$
\begin{aligned}
& \alpha=2 k^{5}+10 k^{4}+16 k^{3}+8 k^{2} \\
& \beta=k^{6}+6 k^{5}+12 k^{4}+8 k^{3} \\
& \gamma=k^{6}+6 k^{5}+14 k^{4}+16 k^{3}+8 k^{2}
\end{aligned}
$$

Note that $\beta=C P_{n}^{6}$
Choice 3.5

$$
\text { Let } n=k^{2}+2 k+2
$$

The corresponding sides of the Pythagorean triangle are

$$
\begin{aligned}
& \alpha=2 k^{5}+10 k^{4}+24 k^{3}+32 k^{2}+24 k+8 \\
& \beta=k^{6}+6 k^{5}+16 k^{4}+24 k^{3}+20 k^{2}+8 k \\
& \gamma=k^{6}+6 k^{5}+18 k^{4}+32 k^{3}+36 k^{2}+24 k+8
\end{aligned}
$$

Note that $\gamma=C P_{n}^{6}$
Properties
(1) $3(\gamma-\beta)$ is a Nasty Number.
(2) $\frac{\alpha \beta}{12 p_{k}^{3}}$ is a biquadratic integer.
(3) $\frac{\alpha \beta}{P_{k}^{5}+t_{3, k}}$ is a perfect square.
(4) $\frac{\gamma}{\beta}=\frac{C P_{k+1}^{3}}{P_{k}^{5}+2 t_{3, k}}$
(5) α is a perfect square when $k=2 p^{2}-1$
(6) $6(\gamma-\alpha)$ is a Nasty number.
(7) $\frac{\gamma \alpha}{C P_{k+1}^{3}}$ is a biquadratic integer.
(8) $\frac{3 \gamma}{\beta}=\frac{C P_{k+1}^{3}}{P_{k}^{3}}$

IV Conclusion

One may search for other patterns of Pythagorean triangles, where, in each of which either a leg or the hypotenuse is represented by other polygonal and pyramidal numbers.

References

1]. L.E.Dickson, History of Theory of Numbers, Vol.2, Chelsea Publishing Company,New York, 1971.
[2]. L.J.Mordell, Diophantine Equations, Academic Press, New York, 1969.
[3]. S.B.Malik, "Basic Number Theory", Vikas Publishing House Pvt. Limited,New Delhi, 1998.
[4]. B.L.Bhatia and Suriya Mohanty,Nasty Numbers and their Characterization, Mathematical Education, 1985 pp.34-37.
[5]. M.A.Gopalan and S.Devibala, Pythagorean Triangle: A Treasure House, Proceeding of the KMA National Seminar on Algebra,Number Theory and Applications to Coding and Cryptanalysis, Little Flower College, Guruvayur.Sep.(2004) 16-18.
[6]. M.A.Gopalan and R.Anbuselvi,A Special Pythagorean Triangle, Acta Cienia Indica,XXXI M (1) (2005) pp. 53.
[7]. M.A.Gopalan and S.Devibala, On a Pythagorean Problem, Acta Cienia Indica,XXXIM(4) (2006) pp. 1451.
[8]. M.A.Gopalan and S.Leelavathi,Pythagorean Triangle with Area/Perimeter as a Square Integer, International Journal of Mathematics, Computer Science and Information Technology 1(2) (2008) 199-204.
[9]. M.A.Gopalan and S.Leelavathi,Pythagorean Triangle with 2Area/Perimeter as a Cubic Integer,Bulletin of Pure and Applied Sciences 26 E(2) (2007) 197-200.
[10]. M.A.Gopalan and A.Gnanam,Pairs of Pythagorean Triangles with Equal Perimeters,Impact J.Sci.Tech 1(2) (2007) 67-70.
[11]. M.A.Gopalan and S.Devibala, Pythagorean Triangle with Triangular Number as a Leg, Impact J.Sci.Tech 2(3) (2008) 135-138
[12]. M.A.Gopalan and G.Janaki,Pythagorean Triangle with Nasty Number as a Leg,Journal of Applied Mathematical Analysis and Applications 4 (1-2) (2008) 13-17.
[13]. M.A.Gopalan, V.Sangeetha and Manju Somanath, Pythagorean Triangle and Pentagonal Number ,Accepted for publication in Cayley Journal of Mahematics.

