On Absolute Weighted Mean $|A, \delta|_{k}$-Summability Of Orthogonal Series

Aditya Kumar Raghuvanshi, Riperndra Kumar \& B.K. Singh
Department of Mathematics IFTM University Moradabad (U.P.) India, 244001

Generalizing the theorem of Kransniqi [On absolute weighted mean summability of orthogonal series, Slecuk J. Appl. Math. Vol. 12 (2011) pp 63-70], we have proved the following theorem which gives some interesting and new results.

If the series

$$
\sum_{n=1}^{\infty}\left\{\left|a_{n, n}\right|^{2\left(\delta+\frac{1}{k}-1\right)} \sum_{j=0}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right\}^{\frac{k}{2}}
$$

Converges for $1 \leq k \leq 2$ then the orthogonal series

$$
\sum_{n=1}^{\infty} \mathrm{c}_{n} \psi_{n}(x)
$$

is summable $|A, \delta|_{k}$ almost every where,

Abstract: In this paper we prove the theorems on absolute weighted mean $|A, \delta|_{k}$-summability of orthogonal series. These theorems are generalize results of Kransniqi [1].
Keywords: Orthogonal Series, Nörlund Matrix, Summability.

I. Introduction

Let $\sum_{n=0}^{\infty} a_{n}$ be a given infinite series with its partial sums $\left\{s_{n}\right\}$ and Let $A=\left(a_{n, v}\right)$ be a normal matrix, that is lower-semi matrix with non-zero entries. By $A_{n}(s)$ we denote the A-transform of the sequence $s=\left\{s_{n}\right\}$, i.e.

$$
A_{n}(s)=\sum_{v=0}^{\infty} a_{n v} s_{v} .
$$

The series $\sum_{n=0}^{\infty} a_{n}$ is said to be summable $|\mathrm{A}|_{k}, k \geq 1$ (Sarigöl [4]) if

$$
\sum_{n=0}^{\infty}\left|a_{n n}\right|^{1-k}\left|A_{n}(s)-A_{n-1}(s)\right|^{k}<\infty
$$

And the series $\sum_{n=0}^{\infty} a_{n}$ is said to be summable $|A, \delta|_{k} k \geq 1, \delta \geq 0$ if

$$
\sum_{n=0}^{\infty}\left|a_{n n}\right|^{-\delta k+1-k}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty
$$

where $\bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s)$
In the special case when A is a generalized Nörlund matrix $|\mathrm{A}|_{k}$ summability is the same as $|N, p, q|_{k}$ summability (Sarigöl [5]).
By a generalized Nörlund matrix we mean one such that

$$
\begin{gathered}
a_{n v}=\frac{p_{n}-v q_{v}}{R_{n}} \text { for } 0 \leq v \leq n \\
a_{n v}=O \text { for } v>n
\end{gathered}
$$

where for given sequences of positive real constant $p=\left\{p_{n}\right\}$ and $q=\left\{q_{n}\right\}$, the convolution $R_{n}=(p * q)_{n}$ is defined by

$$
\left(p^{*} q\right)_{n}=\sum_{v=0}^{\infty} p_{v} q_{n-v}=\sum_{v=0}^{\infty} p_{v-v} q_{v}
$$

where $\left(p^{*} q\right)_{n} \neq 0$ for all n, the generalized Nörlund transform of the sequence $\left\{s_{n}\right\}$ is the sequence $\left\{t_{n}^{p, q}(s)\right\}$ defined by

$$
t_{n}^{p, q}(s)=\frac{1}{R_{n}} \sum_{m=0}^{\infty} p_{n-m} q_{m} s_{m}
$$

and $|A|_{k}$ summability reduces to the following definition:
The infinite series $\sum_{n-0}^{\infty} a_{n}$ is absolutely summable $|\mathrm{N}, \mathrm{p}, \mathrm{q}|_{k} k \geq 1$ if the series

$$
\sum_{n=0}^{\infty}\left(\frac{R_{n}}{q_{n}}\right)^{k-1}\left|t_{n}^{p, q}(s)-t_{n-1}^{p, q}(s)\right|^{k}<\infty
$$

and we write

$$
\sum_{n=0}^{\infty} a_{n} \in N, \mathrm{p},\left.\mathrm{q}\right|_{k}
$$

Let $\{\psi(x)\}$ be an orthonormal system defined in the interval (a, b). We assume that $f(x)$ belongs to $L^{2}(a, b)$ and

$$
\begin{equation*}
f(z) \sim \sum_{n=0}^{\infty} c_{n} \psi_{n} f(x) \tag{1.1}
\end{equation*}
$$

where $c_{n}=\int_{a}^{b} f(x) \psi_{n}(x) d x, \quad n=0,1,2 \ldots$
we write $R_{n}^{j}=\sum_{v=j}^{\infty} p_{n-v} q_{v}, R_{n}^{n+1}=0, R_{n}^{0}=R_{n}$
and $P_{n}=(p * 1)_{n}=\sum_{v=0}^{\infty} p_{v}$ and $Q_{n}=\left(1^{*} q\right)_{n}=\sum_{v=0}^{\infty} q_{v}$
Regarding to $|N, p, q|_{1} \equiv|N, p, q|$, summability of orthogonal series (1.1) the following two theorems are proved.
Theorem 1.1 (Okuyama [3]) If the series

$$
\sum_{n=0}^{\infty}\left\{\sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\left|c_{j}\right|^{2}\right\}^{1 / 2}<\infty
$$

then the orthogonal series $\Sigma c_{n} \psi_{n}(x)$ is summable $|N, p, q|$ almost every where.
Theorem 1.2 (Okuyama [3]) Let $\{\Omega(n)\}$ be a positive sequence such that $\{\Omega(\mathrm{n}) / \mathrm{n}\}$ is a non increasing sequence and the series $\sum_{n=1}^{\infty}(n \Omega(n))^{-1}$ converges. Let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be non negative. If the series $\sum_{n=1}^{\infty}\left|c_{n}\right|^{2} \Omega(n) w^{(1)}(n)$ converges then the orthogonal series $\sum_{j=0}^{\infty} c_{j} \psi_{j}(x) \in|N, p, q|$ almost everywhere, where $w_{(n)}^{(1)}$ is defined by

$$
w_{(j)}^{(1)}=j^{-1} \sum_{n=j}^{\infty} n^{2}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2} .
$$

The main purpose of this paper is studying of the $|A, \delta|_{k}$ summability of the orthogonal series (1.1), for $1 \leq k \leq 2$. Before starting the main result we introduce some further notations.

Given a normal matrix $A=a_{n v}$, we associates two lower semi matrices $\bar{A}=\bar{a}_{n, v}$ and $\hat{A}=\hat{a}_{n, v}$ as follows

$$
\bar{a}_{n, v}=\sum_{i=v}^{\infty} a_{n i}, n, i=0,1,2
$$

and $\hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \hat{a}_{00}=\bar{a}_{00}, n=1,2, \ldots$.
It ma be noted that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations resp.
Throughout this paper we denote by $K a$ constant that depends only on k and may be different in different relations.

II. Main Results

We prove the following theorems:
Theorem 2.1 If the series

$$
\sum_{n=1}^{\infty}\left\{\left|a_{n, n}\right|^{2\left(\delta+\frac{1}{k}-1\right)} \sum_{j=0}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right\}^{k / 2}
$$

Converges for $1 \leq k \leq 2$, then the orthogonal series

$$
\sum_{n=0}^{\infty} c_{n} \psi_{n}(x)
$$

is summable $|A, \delta|_{k}$ almost every where.
Proof. For the matrix transform $A_{n}(\mathrm{~s})(\mathrm{x})$ of the partial sums of the orthogonal series $\sum_{n=0}^{\infty} c_{n} \psi_{n}(x)$ we have

$$
\begin{aligned}
A_{n}(s)(x) & =\sum_{v=0}^{n} a_{n v} s_{v}(x) \\
& =\sum_{v=0}^{n} a_{n, v} \sum_{j=0}^{v} c_{j} \psi_{n}(x) \\
& =\sum_{j=0}^{n} c_{j} \psi_{n}(x) \sum_{v=0}^{n} a_{n v} \\
& =\sum_{j=0}^{n} \bar{a}_{n, j} c_{j} \psi_{n}(x)
\end{aligned}
$$

where $\sum_{j=0}^{v} c_{j} \psi_{n}(x)$ is the partial sum of order v of the series (1.1)
Hence

$$
\begin{aligned}
\bar{\Delta} A_{n}(s)(x) & =\sum_{j=0}^{\infty} \bar{a}_{n, j} c_{j} \psi_{j}(x)-\sum_{j=0}^{n-1} \bar{a}_{n-1, j} c_{j} \psi_{j}(x) \\
& =\bar{a}_{n, \mathrm{n}} c_{j} \psi_{n}(x)+\sum_{j=0}^{n-1}\left(\bar{a}_{n, j}-\bar{a}_{n-1, j}\right) c_{j} \psi_{j}(x) \\
& =\hat{a}_{n, \mathrm{n}} c_{j} \psi_{n}(x)+\sum_{j=0}^{n-1} \hat{a}_{n, j} c_{j} \psi_{j}(x) \\
& =\sum_{j=0}^{n} \hat{a}_{n, j} c_{j} \psi_{j}(x)
\end{aligned}
$$

Using the Hölder's inequality and orthogonality to the latter equality we have

$$
\begin{aligned}
\int_{a}^{b}\left|\bar{\Delta} A_{n}(s)(x)\right|^{k} d x & \leq(b-a)^{1-\frac{k}{2}}\left(\int_{a}^{b}\left|A_{n}(s)(x)-A_{n-1}(s)(x)\right|^{2} d x\right)^{\frac{K}{2}} \\
& =(b-a)^{1-\frac{k}{2}}\left(\int_{a}^{b}\left|\sum_{j=0}^{n} \hat{a}_{n, j} c_{j} \psi_{j}(x)\right|^{2}\right)^{\frac{K}{2}}
\end{aligned}
$$

Thus the series

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left|a_{n n}\right|^{1-k-\delta k} \int_{a}^{b}\left|\bar{\Delta} A_{n}(s)(x)\right|^{k} d x \\
\leq & k \sum_{n=1}^{\infty}\left\{\left|a_{n n}\right|^{\frac{2}{k}-2 \delta-2} \sum_{j=0}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right\}^{k / 2} \tag{2.1}
\end{align*}
$$

Converges by the assumption.
From this fact and since the function $\left|\bar{\Delta} A_{n}(s)(x)\right|$ are non negative and by Lemma of Beppo-Levi [2] we have

$$
\sum_{n=1}^{\infty}\left|a_{n n}\right|^{1-k-\delta k}\left|\bar{\Delta} A_{n}(s)(x)\right|^{k}
$$

Converges almost every where.
This completes the proof of theorem.
If we put

$$
\begin{equation*}
H^{(k)}(A ; \delta, j)=\frac{1}{j^{\frac{2}{k}-1}} \sum_{n=j}^{\infty} n^{\frac{2}{k}}\left|n a_{n n}\right|^{\frac{2}{k}-2-2 \delta}\left|\hat{a}_{n, j}\right|^{2} \tag{2.2}
\end{equation*}
$$

then the following theorem holds true.
Theorem 2.2: Let $1 \leq k \leq 2$ and $\{\Omega(n)\}$ be a positive sequence such that $\left\{\frac{\Omega(n)}{n}\right\}$ is a non decreasing sequence and the series $\sum_{n=1}^{\infty} \frac{1}{n \Omega(n)}$ converges. If the following series $\sum_{n=1}^{\infty}\left|c_{n}\right|^{2} \Omega^{\frac{2}{k}-1}(n) H^{k}(A, \delta, n)$ converges, then the orthogonal series $\sum_{n=0}^{\infty} c_{n} \psi_{n}(x) \in|A, \delta|_{k}$ almost every where, where $H^{k}(A, \delta, n)$ is defined by (2.2)
Proof. Applying Hölder's inequality to inequality (2.1) we get

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left|a_{n n}\right|^{1-k-\delta k} \int_{a}^{b}\left|\bar{\Delta} A_{n}(s)(x)\right|^{k} d x \leq \sum_{n=1}^{\infty}\left|a_{n n}\right|^{1-k-\delta k}\left[\sum_{j=1}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right]^{k / 2} \\
& =k \sum_{n=1}^{\infty} \frac{1}{(n \Omega(n))^{\frac{2-k}{2}}}\left[\left|a_{n n}\right|^{\frac{2}{k}-2-2 \delta}(n \Omega(n))^{\frac{2}{k}-1} \sum_{j=0}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right]^{k / 2} \\
& \leq k\left(\sum_{n=1}^{\infty} \frac{1}{a_{n, n} \Omega(n)}\right)^{\frac{2-k}{2}}\left[\sum_{n=1}^{\infty}\left|a_{n n}\right|^{\frac{2}{k}-2-2 \delta}(n \Omega(n))^{\frac{2}{k}-1} \sum_{j=0}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right]^{k / 2} \\
& \leq k\left\{\sum_{j=1}^{\infty}\left|c_{j}\right|^{2} \sum_{n=j}^{\infty}\left|a_{n, n}\right|^{\frac{2}{k}-2-2 \delta}\left(n \Omega(n)^{\frac{2}{k}-1}\left|\hat{a}_{n, j}\right|^{2}\right\}^{k / 2}\right. \\
& \leq k\left\{\sum_{j=1}^{\infty}\left|c_{j}\right|^{2}\left(\frac{\Omega(j)}{j}\right)^{\frac{2}{k}-1} \sum_{n=j}^{\infty} n^{\frac{2}{k}-\delta}\left|n a_{n n}\right|^{\frac{2}{k}-2-\delta}\left|\hat{a}_{n, j}\right|^{2}\right\} \\
& =k\left\{\sum_{j=1}^{\infty}\left|c_{j}\right|^{2} \Omega^{\frac{2}{k}-1} j H^{k}(A, \delta, j)\right\}^{k / 2}
\end{aligned}
$$

which is finite by virtue of the hypothesis of the theorem and completes the proof of the theorem.

References:

[1] Kransniqi, Xhevat Z.; On absolute weighted mean summability of orthogonal series, Slecuk J. App. Math. Vol. 12 (2011) pp 63-70.
[2] Nantason, I.P.; Theory of functions of a real variable (2 vols), Frederick Ungar, New York 1955, 1961.
[3] Okuyama, Y.; On the absolute generalized, Nörlund summability of orthogonal series, Tamkang J. Math. Vol. 33, No. 2, (2002) pp. 161-165.
[4] Sarigöl, M.A.; On absolute weighted mean summability methods, Proc. Amer. Math. Soc. Vol. 115 (1992).
[5] Sarigöl, M.A.; On some absolute summability methods, Proc. Amer. Math. Soc. Vol. 83 (1991), 421-426.

