On The Surd Transcendental Equation With Five Unknowns

$$
\sqrt[4]{x^{2}+y^{2}}+\sqrt[2]{z^{2}+w^{2}}=\left(k^{2}+1\right)^{2 n} R^{5}
$$

M.A.Gopalan ${ }^{1}$, G.Sumathi ${ }^{2}$ and S.Vidhyalakshmi ${ }^{3}$
${ }^{1,2,3}$ Department of Mathematics, Shrimathi Indira Gandhi College,Trichy-600002,India.

Abstract: The transcendental equation with five unknowns represented by the diophantine equation $\sqrt[4]{x^{2}+y^{2}}+\sqrt[2]{z^{2}+w^{2}}=\left(k^{2}+1\right)^{2 n} R^{5}$ is analyzed for its patterns of non-zero distinct integral solutions.
Keywords: Transcendental equation,integral solutions,surd equation
M.Sc 2000 mathematics subject classification: 11D99

NOTATIONS

$$
\begin{aligned}
t_{m, n} & : \text { Polygonal number of rank } n \text { with size } m \\
P_{n}^{m} & : \text { Pyramidal number of rankn with size } m \\
\mathrm{Cp}_{\mathrm{n}}^{\mathrm{m}} & : \text { Centered Pyramidal number of rank } n \text { with size } m
\end{aligned}
$$

I. Introduction

Diophantine equations have an unlimited field of research by reason of their variety. Most of the Diophantine problems are algebraic equations $[1,2,3]$. It seems that much work has not been done to obtain integral solutions of transcendental equations.In this context one may refer $[4-16]$. This communication analyses a transcendental equation with five unknowns given by $\sqrt[4]{x^{2}+y^{2}}+\sqrt[2]{z^{2}+w^{2}}=\left(k^{2}+1\right)^{2 n} R^{5}$. Infinitely many non-zero integer quintuples $(\mathrm{x}, \mathrm{y}, \mathrm{X}, \mathrm{Y}, \mathrm{z}, \mathrm{w})$ satisfying the above equation are obtained.

II. Method Of Analysis

The diophantine equation representing a transcendental equation with five unknowns is

$$
\begin{equation*}
\sqrt[4]{x^{2}+y^{2}}+\sqrt[2]{z^{2}+w^{2}}=\left(k^{2}+1\right)^{2 n} R^{5} \tag{1}
\end{equation*}
$$

To start with,the substitution of the transformations

$$
\left.\begin{array}{l}
x=4 p q\left(p^{2}-q^{2}\right) \\
\left.\begin{array}{l}
y=4 p^{2} q^{2}-\left(p^{2}-q^{2}\right)^{2}
\end{array}\right\} . . \tag{2b}\\
z=2 p q \\
w=p^{2}-q^{2}
\end{array}\right\} \ldots \ldots \ldots \ldots \ldots \ldots \ldots .
$$

in(1) leads to

$$
\begin{equation*}
2\left(p^{2}+q^{2}\right)=\left(k^{2}+1\right)^{2 n} R^{5} \tag{3}
\end{equation*}
$$

Assume

$$
\begin{align*}
& \mathrm{R}=\mathrm{R}(\mathrm{~A}, \mathrm{~B})=\mathrm{A}^{2}+\mathrm{B}^{2}, \mathrm{~A}, \mathrm{~B}>0 \tag{4}\\
& 2=(1+i)(1-i) \tag{5}
\end{align*}
$$

and write 2 as
Substituting (5),(4) in (3),and employing the method of factorization,define

$$
\begin{equation*}
(1+i)(p+i q)=(\alpha+i \beta)(A+i B)^{5} \tag{6}
\end{equation*}
$$

where,

$$
\alpha=\frac{1}{2}\left((k+i)^{2 n}+(k-i)^{2 n}\right)
$$

$$
\beta=\frac{1}{2 i}\left((k+i)^{2 n}-(k-i)^{2 n}\right)
$$

Equating real and imaginary parts in (6), we get

$$
\left.\begin{array}{l}
p-q=\alpha f(A, B)-\beta g(A, B) \\
p+q=\beta f(A, B)+\alpha g(A, B) \tag{7}
\end{array}\right\} \cdots \cdots \cdots .
$$

where

$$
g(A, B)=\left(5 A^{4} B-10 A^{2} B^{3}+B^{5}\right)
$$

Solving the system of equations (7), we get

$$
\left.\begin{array}{l}
p=\frac{(\alpha+\beta) f(A, B)+(\alpha-\beta) g(A, B)}{2} \\
q=\frac{(\alpha+\beta) g(A, B)-(\alpha-\beta) g(A, B)}{2} \tag{7a}
\end{array}\right\}
$$

It is to be noted that p and q are integers only when A and B are of the same pairty.
Replacing A by $2 A, B$ by $2 B$ in(7a) and (4), we have

$$
\left.\begin{array}{l}
p=2^{4}((\alpha+\beta) f(A, B)+(\alpha-\beta) g(A, B) \\
q=2^{4}((\alpha+\beta) g(A, B)-(\alpha-\beta) g(A, B))
\end{array}\right\}
$$

Substituting (7b) in (2a) and (2b), the values of (x, y, z, w) are represented by
$x(A, B)=2^{16}\left\{\begin{array}{l}4((\alpha+\beta) f(A, B)+(\alpha-\beta) g(A, B))((\alpha+\beta) g(A, B)-(\alpha-\beta) f(A, B))- \\ \left([((\alpha+\beta) f(A, B)+(\alpha-\beta) g(A, B))]^{2}-[((\alpha+\beta) g(A, B)-(\alpha-\beta) f(A, B))]^{2}\right)\end{array}\right\}$
$y(A, B)=2^{16}\left\{\begin{array}{l}4((\alpha+\beta) f(A, B)+(\alpha-\beta) g(A, B))^{2}((\alpha+\beta) g(A, B)-(\alpha-\beta) f(A, B))^{2}- \\ \left([((\alpha+\beta) f(A, B)+(\alpha-\beta) g(A, B))]^{2}-[((\alpha+\beta) g(A, B)-(\alpha-\beta) f(A, B))]^{2}\right)^{2}\end{array}\right\}$
$z(A, B)=2^{8}((\alpha+\beta) f(A, B)+(\alpha-\beta) g(A, B))((\alpha+\beta) g(A, B)-(\alpha-\beta) f(A, B))$
$w(A, B)=2^{8}((\alpha+\beta) f(A, B)+(\alpha-\beta) g(A, B))^{2}-((\alpha+\beta) g(A, B)-(\alpha-\beta) f(A, B))^{2}$
The above equations and $(7 \mathrm{c})$ represents the non-zero integer solutions to (1).
In a similar manner, replacing A by $2 \mathrm{~A}+1, \mathrm{~B}$ by $2 \mathrm{~B}+1$ one obtains the corresponding set of non-zero integer solutions to (1).

It is worth to observe that one may employ different set of transformations for Z and W leading to a different solution pattern which is illustrated as follows.
in (1), we get

$$
\begin{equation*}
z^{2}+w^{2}=s^{2} \tag{8}
\end{equation*}
$$

(8) can be rewritten as

$$
\begin{equation*}
z^{2}+w^{2}=s^{2}=s^{2} * 1 \tag{9}
\end{equation*}
$$

Assume $\quad s=s(p, q)=p^{2}+q^{2}, p, q>0$
and write 1 as

$$
\begin{equation*}
\left.1=\frac{\left(m^{2}-n^{2}+i 2 m n\right)\left(m^{2}-n^{2}-i 2 m n\right)}{\left(m^{2}+n^{2}\right)^{2}}\right\} \ldots \ldots \ldots \ldots \ldots \tag{11}
\end{equation*}
$$

Substituting (11),(10) in (9), and employing the method of factorization, define

$$
\left.\begin{array}{l}
z=\frac{\left(\left(m^{2}-n^{2}\right)\left(p^{2}-q^{2}\right)-4 p q m n\right)}{\left(m^{2}+n^{2}\right)} \tag{12}\\
w=\frac{\left(2 m n\left(p^{2}-q^{2}\right)+2 p q\left(m^{2}-n^{2}\right)\right)}{\left(m^{2}+n^{2}\right)}
\end{array}\right\} .
$$

As our thurst is an finding integer solution, replacing p by $\left(m^{2}+n^{2}\right) P, q$ by $\left(m^{2}+n^{2}\right) Q$ in (2a),(12),we have

$$
\left.\begin{array}{l}
x=4\left(m^{2}+n^{2}\right)^{4} P Q\left(P^{2}-Q^{2}\right) \\
y=\left(m^{2}+n^{2}\right)^{4}\left[4 P^{2} Q^{2}-\left(P^{2}-Q^{2}\right)^{2}\right] \\
z=\left(m^{2}+n^{2}\right)\left[\left(m^{2}-n^{2}\right)\left(P^{2}-Q^{2}\right)-4 P Q m n\right] \tag{13}\\
w=\left(m^{2}+n^{2}\right)\left[2 m n\left(P^{2}-Q^{2}\right)+2 P Q\left(m^{2}-n^{2}\right)\right]
\end{array}\right\}
$$

where
$P=2^{4}\left(m^{2}+n^{2}\right)^{8}\left(\left(\left(m^{2}-n^{2}\right)-2 m n\right)(\beta f(A, B)+\alpha g(A, B))-\left(\left(m^{2}-n^{2}\right)+2 m n\right)(\alpha f(A, B)-\beta g(A, B))\right.$
$Q=2^{4}\left(m^{2}+n^{2}\right)^{8}\left[\left(\left(m^{2}-n^{2}\right)-2 m n\right)(\alpha f(A, B)-\beta g(A, B))-\left(\left(m^{2}-n^{2}\right)+2 m n\right)(\beta f(A, B)+\alpha g(A, B))\right]$
Note that (13) and (4) represent the integral solutions to (1),provided A and B are of the same pairty.

2.1 : Properties:

1. (z, w, y) satisfies the hyperbolic paraboloid $z^{2}-w^{2}=y$
2. $w(q+1, q) z(q+1, q)=12 P_{q}^{4}$
3. $x=2 w z$
4. $w^{2}(q+1, q)=8 t_{3, q}+1$
5. $z(q(q+1), q)=4 P_{q}^{5}$
6. $z(p, 1) w(p, 1)=12 P_{p-1}^{3}$
7. $m[z(p, 1) w(p, 1)]+6 z(p, 1)=12 C p_{p}^{m}, m \geq 3$
8. $2 z(p, 1)+(m-2) z(p, p-1)=4 t_{m, p}, m>2$
9. $\left(y+w^{2}\right) z$ is a cubical integer
10. $z^{2} y=z^{4}-(x-z w)^{2}$
11. $x^{2}=4 w^{2}\left(y+w^{2}\right)$
12. $2 w-y+1$ is a difference of two squares.

III. Conclusion:

To conclude, one may search for other pattern of solutions and their corresponding properties.

References:

1] L.E.Dickson,History of Theory of numbers,Vol.2,Chelsea publishing company,Newyork,1952.
[2] L.J.Mordel, Diophantine Equations, Academic press,Newyork,1969.
[3] Bhantia.B.L and Supriya Mohanty " Nasty numbers and their characterizations" Mathematical Education,Vol-II,No. 1 Pg.34-37, [1985]
[4] M.A Gopalan, and S.Devibala, "A remarkable Transcendental Equation"' Antartica.J.Math.3(2), 209-215, (2006).
[5] M.A.Gopalan,V.Pandichelvi ''On transcendental equation $z=\sqrt[3]{x+\sqrt{B} y}+\sqrt[3]{x-\sqrt{B} y}$ ', Antartica . J.Math,6(1), 5558,(2009).
[6] M.A.Gopalan and J. Kaliga Rani, 'On the Transcendental equation $x+g \sqrt{x}+y+h \sqrt{y}=z+g \sqrt{z}$ ', International Journal of mathematical sciences,Vol.9, No.1-2, 177-182, Jan-Jun 2010.
[7] M.A.Gopalan and V.Pandichelvi, "Observations on the Transcendental equation $z=\sqrt[2]{x}+\sqrt[3]{k x+y^{2}}$ ", Diophantus J.Math., 1(2), 59-68, (2012).
[8] M.A.Gopalan and J.Kaliga Rani, "On the Transcendental equation $x+\sqrt{x}+y+\sqrt{y}=z+\sqrt{z}$ ", Diophantus.J.Math.1(1),9-14, 2012.
[9] M.A.Gopalan,Manju Somanath and N.Vanitha, "On Special Transcendenta Equations'’Reflections des ERA-JMS, Vol.7,issue 2,187-192,2012.
[10] V.Pandichelvi, "An Exclusive Transcendental equations $\sqrt[3]{x^{2}+y^{2}}+\sqrt[3]{z^{2}+w^{2}}=\left(k^{2}+1\right) R^{2}$,, International Journal of Engineering Sciences and Research Technology,Vol.2,No.2,939-944,2013. M.A.Gopalan, S.Vidhyalakshmi and S.Mallika , " On the Transcendental equation $\sqrt[3]{X^{2}+Y^{2}}+\sqrt[3]{Z^{2}+W^{2}}=2\left(k^{2}+s^{2}\right) R^{5}$, ,IJMER,Vol.3(3), 1501-1503, 2013.
[12] M.A.Gopalan, S.Vidhyalakshmi and A.Kavitha, "Observations On $\sqrt[2]{y^{2}+2 x^{2}}+2 \sqrt[3]{X^{2}+Y^{2}}=\left(k^{2}+3\right)^{n} z^{2}$,, International Journal of Pure and Applied Mathematical Sciences,vol 6,No 4,pp.305-311,2013.
[13] M.A.Gopalan,G.Sumathi and S.Vidhyalakshmi, " On the Transcendental equation with five unknowns $3 \sqrt[3]{x^{2}+y^{2}}-2 \sqrt[4]{X^{2}+Y^{2}}=\left(r^{2}+s^{2}\right) z^{6}, \quad$ Global Journal of Mathematics and Mathematical Sciences,Vol.3,No.2,pp.63-66,2013.
[14] M.A.Gopalan,G.Sumathi and S.Vidhyalakshmi, , " On the Transcendental equation with six unknowns $2 \sqrt[2]{x^{2}+y^{2}-x y}-\sqrt[3]{X^{2}+Y^{2}}=\sqrt[2]{z^{2}+2 w^{2}},$, , accepted in Cayley Journal of Mathematics
[15] M.A.Gopalan, S.Vidhyalakshmi and S.Mallika , "An interesting Ttranscendental equation $6 \sqrt[2]{Y^{2}+3 \mathrm{X}^{2}}-2 \sqrt[3]{\mathrm{Z}^{2}+\mathrm{W}^{2}}=\mathrm{R}^{2}$,’, accepted in Cayley Journal of Mathematics
[16] M.A.Gopalan, S.Vidhyalakshmi and A.Kavitha, "On the Ttranscendental equation $7 \sqrt[2]{y^{2}+2 x^{2}}+2 \sqrt[3]{X^{2}+Y^{2}}=z^{2}$, , accepted in Diophantus Journal of Mathematics.

