Pythagorean Equation and Special M-Gonal Numbers

M. A. Gopalan ${ }^{1}$, V. Geetha ${ }^{2}$
${ }^{1}$ (Department of Mathematics, Shrimathi Indira Gandhi College,Trichirappalli-620 002.)
${ }^{2}$ (Department of Mathematics, Cauvery College For Women,Trichirappalli-620 018.)

Abstract: Employing the solutions of the Pythagorean equation, we obtain the relations between the pairs of special polygonal numbers such that the difference in each pair is a perfect square.
Key Words: Pythagorean equation,Polygonal numbers
MSC Classification Number: 11D09.
NOTATIONS
Pen $_{P}=$ Pentagonal number of rank P
Hex $_{Q}=$ Hexagonal number of rank Q
$H e p_{H}=$ Heptagonal number of rank H
Dodec $_{D}=$ Dodecagonal number of rank D

I. Introduction

In $[1,2,4-8,10]$,employing the integral solutions of special binary quadratic Diophantine equation, special patterns of Pythagorean triangles are generated. In [3], the relations among the pairs of special m-gonal numbers generated through the solutions of the binary quadratic equation $y^{2}=2 x^{2}-1$ are determined. In [9], the relations among special figurate numbers through the equation $y^{2}=10 x^{2}+1$ are obtained. In[11],employing the solutions of the Pythagorean equation, and obtain the relations between Triangular number and Pentagonal number, Octagonal number, Hexagonal number, Heptagonal number, Decagonal number, Dodecagonal number , Pentagonal number and Hexagonal number, Octagonal number such that the difference in each pair is a perfect square. In this communication, employing the solutions of the Pythagorean equation, we obtain the relations between the pairs of special polygonal numbers which are not mentioned in [11] such that the difference in each pair is a perfect square.

II. Method Of Analysis

Consider the Pythagorean equation

$$
\begin{equation*}
x^{2}+y^{2}=z^{2} \tag{1}
\end{equation*}
$$

whose solutions are

$$
\begin{equation*}
x=2 r s, y=r^{2}-s^{2}, z=r^{2}+s^{2} \tag{2}
\end{equation*}
$$

where r, s are non-zero distinct integers and $r>S$.
Case.2.1:
The choice

$$
\begin{equation*}
10 H-3=r^{2}+s^{2}, 18 P-3=r^{2}-s^{2} \tag{3}
\end{equation*}
$$

in (1) leads to the relation

$$
\begin{equation*}
40 \mathrm{Hep}_{H}-216 \mathrm{Pen}_{P}=\alpha^{2} \tag{4}
\end{equation*}
$$

From (3), the values of ranks of the Heptagoanl numbers and Pentagonal numbers are respectively given by

$$
P=\frac{r^{2}-s^{2}+3}{18} ; H=\frac{r^{2}+s^{2}+3}{10}
$$

It is seen that P, H are integers for the following choices of r and s namely,
(i) $s=1 ; r=14$
(ii) $s=4 ; r=11$
(iii) $s=15 n-14 ; r=15 n-11$
(iv) $s=15 n-4 ; r=15 n+11$
(v) $s=15 n-4 ; r=15 n+29$

For each of the values of r and s the corresponding Pentagonal and Heptagonal numbers satisfying (4) are presented in the Table (1)below.

Table (1)

S N N	P	H	Pen $_{P}$	$H e p_{H}$	α
1	6	14	51	469	970
2	11	20	176	$\frac{1}{2}\left(45 n^{2}-75 n+32\right)\left(225 n^{2}-375 n+15\right.$	$\left(450 n^{2}-750 n+308\right.$
3	$5 n-4$	$45 n^{2}-75 n+32$	$\frac{1}{2}\left(75 n^{2}-125 n+52\right)$	28	
4	$25 n-6$	$45 n^{2}+21 n+14$	$\frac{1}{2}\left(1875 n^{2}+875 n+102\right)$	$\frac{1}{2}\left(45 n^{2}+21 n+14\right)\left(225 n^{2}+105 n-\left(450 n^{2}+210 n+\ell\right.\right.$	
5	$55 n+4$	$45 n^{2}+75 n+86$	$\frac{1}{2}\left(9075 n^{2}+15125 n+630\right.$	$\frac{1}{2}\left(45 n^{2}+75 n+86\right)\left(225 n^{2}+375 n+\right.$	$\left(450 n^{2}+750 n-23\right.$

Case 2.2:

The Choice

$$
\begin{equation*}
5 \mathrm{D}-2=r^{2}-s^{2} ; 12 P-2=r^{2}+s^{2} \tag{5}
\end{equation*}
$$

in (1) leads to the relation

$$
96 \text { Pen }_{P}-5 \text { Dodec }_{D}=\alpha^{2}
$$

From (5), the values of ranks of the Pentagonal and Dodecagonal numbers are respectively given by,

$$
P=\frac{r^{2}+s^{2}+2}{12}, D=\frac{r^{2}-s^{2}+2}{5}
$$

It is seen that P and D are integers for the following choices of r and s namely,
(i) $s=1 ; r=30 n-27$
(ii) $s=9 ; r=30 n \pm 7$
(iii) $s=9 ; r=30 n \pm 17$
(iv) $s=1 ; r=30 n \pm 3$
(v) $s=11 ; r=30 n \pm 3$
(vi) $s=19 ; r=30 n \pm 3$
(vii) $s=30 n-19 ; r=60 n-27$
(viii) $s=30 n+1 ; r=60 n+3$

For each of the values of r and s the corresponding values of P and D are presented in the Table (2) below.

Table (2)

S.No	P	D
1	$75 n^{2}-135 n+61$	$180 n^{2}-324 n+146$
2	$75 n^{2} \pm 35 n+11$	$180 n^{2} \pm 84 n-6$
3	$75 n^{2} \pm 85 n+31$	$180 n^{2} \pm 204 n+42$
4	$75 n^{2} \pm 15 n+1$	$180 n^{2} \pm 36 n+2$
5	$75 n^{2} \pm 15 n+11$	$180 n^{2} \pm 36 n+22$
6	$75 n^{2} \pm 15 n+31$	$180 n^{2} \pm 36 n+70$

7	$375 n^{2}-365 n+91$	$540 n^{2}-420 n+74$
8	$375 n^{2}+35 n+1$	$540 n^{2}+60 n+2$

In Table(3) below represent the corresponding Pentagonal and Dodecagonal numbers are exhibited.

Table(3)

S. No	Pen $_{P}$	Dodec $_{D}$	α
1	$\frac{1}{2}\left(75 n^{2}-135 n+61\right)\left(225 n^{2}-405 n+182\right)$	$\left(180 n^{2}-324 n+146\right)\left(900 n^{2}-1620 n+726\right)$	$(60 n-54)$
2	$\frac{1}{2}\left(75 n^{2} \pm 35 n+11\right)\left(225 n^{2} \pm 105 n+32\right)$	$\left(180 n^{2} \pm 84 n-6\right)\left(900 n^{2} \pm 420 n-34\right)$	$(540 n \pm 126)$
3	$\frac{1}{2}\left(75 n^{2} \pm 85 n+31\right)\left(225 n^{2} \pm 255 n+92\right)$	$\left(180 n^{2} \pm 204 n+42\right)\left(900 n^{2} \pm 1020 n+206\right)$	$(540 n \pm 306)$
4	$\frac{1}{2}\left(75 n^{2} \pm 15 n+1\right)\left(225 n^{2} \pm 45 n+2\right)$	$\left(180 n^{2} \pm 36 n+2\right)\left(900 n^{2} \pm 180 n+6\right)$	$(60 n \pm 6)$
5	$\frac{1}{2}\left(75 n^{2} \pm 15 n+11\right)\left(225 n^{2} \pm 45 n+32\right)$	$\left(180 n^{2} \pm 36 n+22\right)\left(900 n^{2} \pm 180 n-114\right)$	$(660 n \pm 66)$
6	$\frac{1}{2}\left(75 n^{2} \pm 15 n+31\right)\left(225 n^{2} \pm 45 n+92\right)$	$\left(180 n^{2} \pm 36 n+70\right)\left(900 n^{2} \pm 180 n-354\right)$	$(1140 n \pm 114)$
7	$\frac{1}{2}\left(375 n^{2}-365 n+91\right)\left(1125 n^{2}-1095 n+272\right)$	$\left(540 n^{2}-420 n+74\right)\left(2700 n^{2}-2100 n+366\right)$	$\left(3600 n^{2}-3900 n+1026\right)$
8	$\frac{1}{2}\left(375 n^{2}+35 n+1\right)\left(1125 n^{2}+105 n+2\right)$	$\left(540 n^{2}+60 n+2\right)\left(2700 n^{2}+300 n+6\right)$	$\left(3600 n^{2}+300 n+6\right)$

Case2.3:

The Choice

$$
\begin{equation*}
12 Q-3=r^{2}+s^{2} ; 10 H-3=r^{2}-s^{2} \tag{6}
\end{equation*}
$$

in (1) leads to the relation

$$
72 H e x_{Q}-40 H e p_{H}=\alpha^{2}
$$

From (6), the values of ranks of the Hexagonal and Heptagonal numbers are respectively given by

$$
Q=\frac{r^{2}+s^{2}+3}{12} ; H=\frac{r^{2}-s^{2}+3}{10}
$$

which are integers for the following three choices of r and s namely,
(i) $s=15 n-3 ; r=15 n+6$
(ii) $s=15 m-12 ; r=30 n+15 m-21$
(iii) $s=15 m-12 ; r=30 n+15 m-39$

For each of the values of r and s the values of Q and H are presented in the Table(4) below

Table(4)

S.No	Q	H
1	$\frac{1}{12}\left(450 n^{2}+90 n+48\right)$	$27 n+3$
2	$\frac{1}{12}\left(900 n^{2}+900 n m+450 m^{2}-1260 n-990 m+588\right)$	$90 n^{2}+90 n m-126 n-27 m+30$
3	$\frac{1}{12}\left(900 n^{2}+900 n m+450 m^{2}-2340 n-1170 m+1668\right)$	$90 n^{2}+90 n m-234 n-81 m+138$

In Table(5) below represent the corresponding Hexagonal and Heptagonal numbers are exhibited.
Table(5)

s.no	$H_{\text {ex }}^{Q}$	Hep_{H}	α
1	$\frac{1}{72}\left(450 n^{2}+90 n+48\right)\left(450 n^{2}+90 n+42\right)$	$(27 n+3)(135 n+12)$	$\left(450 n^{2}+90 n-36\right)$
2	$\frac{1}{72}\left(900 n^{2}+900 m+450 m^{2}-1260 n-990 m+588\right)\left(900 n^{2}+900 m+450 m^{2}-1260 n-990 m+582\right)$	$\begin{aligned} & \left(90 n^{2}+90 r m-126 n-27 m+30\right) \\ & \left(450 n^{2}+450 m n-630 n-135 m+147\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 450 m^{2}-990 m-720 n \\ & +900 \mathrm{~mm}+504 \end{aligned}$
3	$\frac{1}{72}\left(900 n^{2}+900 n m+450 m^{2}-2340 n-1170 m+1688\right)\left(900 n^{2}+900 n m+450 m^{2}-2340 n-1170 m+1682\right)$	$\left(90 n^{2}+90 n m-234 n-81 m+138\right)$ $\left(450 n^{2}+450 n m-1170 n-405 m+687\right)$	$\begin{aligned} & 450 m^{2}-1170 m-720 n \\ & +900 \mathrm{~nm}+936 \end{aligned}$

III. Conclusion

One may search for relations among other m-gonal numbers such that the difference in each pair is a perfect square.

References

[1] M.A.Gopalan and G.Janaki,Observations on $y^{2}=3 x^{2}+1$ Acta Ciencia Indica XXXIVM (2) (2008) 103-106.
[2] M.A.Gopalan and B.Sivakami,Observations on the integral solutions of $y^{2}=7 x^{2}+1$, Antarctica J. Math. 7(3),(2010), 291296
[3] M.A.Gopalan and G.Srividhya,Relations among m-gonal numbers through equation $y^{2}=2 x^{2}-1$,Antarctica J. Math. 7(3),(2010), 363-369
[4] M.A.Gopalan and R.Vijayalakshmi,Special Pythagorean triangles generated through the integral solutions of the equation $y^{2}=\left(k^{2}+1\right) x^{2}+1$,Antarctica J. Math. 7(5),(2010), 503-507
[5] M.A.Gopalan and R.Vijayalakshmi, Observations on the integral solutions of $y^{2}=5 x^{2}+1$, Impact J.Sci.Tech. 4(4),(2010), 125-129
[6] M.A.Gopalan and R.S.Yamuna, Remarkable observations on the binary quadratic equation $y^{2}=\left(k^{2}+2\right) x^{2}+1$, Impact J.Sci.Tech. 4(4),(2010), 61-65
[7] M.A.Gopalan and G.Sangeetha,A Remarkable observation on the binary quadratic equation $y^{2}=10 x^{2}+1$, Impact J.Sci.Tech. 4 (2010), 103-106
[8] M.A.Gopalan and R.Palanikumar, Observations on $y^{2}=12 x^{2}+1$, Antarctica J. Math. 8(2),(2011),149-152
[9] Manju Somanath,G.Sangeetha and M.A.Gopalan, Relations among special figurate numbers through equation $y^{2}=10 x^{2}+1$, Impact J.Sci.Tech. 5(1),(2011), 57-60
[10] M.A.Gopalan and K.Geetha, Observations on the Hyperbola $y^{2}=18 x^{2}+1$,RETELL, 13(1), Nov.2012,81-83.
[11]. M.A.Gopalan, V.Sangeetha and Manju Somanath, Pythagorean equation and Special m-gonal numbers, sent to Antartica journal

