A Study On Translations Of Anti S-Fuzzy Subhemiring Of A Hemiring

K.Umadevi¹, C. Elango², P.Thangavelu³

¹Department of Mathematics, Noorul Islam University, Kumaracoil, Tamilnadu, India ²Department of Mathematics, Cardamom Planter's Association College, Bodinayakanoor, Tamilnadu, India ³Department of Mathematics, Karunya University, Coimbatore, Tamilnadu, India

Abstract: In this paper, we made an attempt to study the algebraic nature of an anti (T, S)-fuzzy normal ideals and translations of anti S-fuzzy subhemiring of a hemiring. 2000 AMS Subject classification: 03F55, 06D72, 08A72.

Key Words: Anti S-fuzzy subhemiring, anti (T, S)-fuzzy ideal, anti (T, S)-fuzzy normal ideal, anti-product, translations, lower level.

I. Introduction:

There are many concepts of universal algebras generalizing an associative ring (R; +; .). Some of them in particular, nearrings and several kinds of semirings have been proven very useful. Semirings (called also halfrings) are algebras (R; +; .) share the same properties as a ring except that (R; +) is assumed to be a semigroup rather than a commutative group. Semirings appear in a natural manner in some applications to the theory of automata and formal languages. An algebra (R; +, .) is said to be a semiring if (R; +) and (R; .) are semigroups satisfying a. (b+c) = a. b+a. c and (b+c) .a = b. a+c. a for all a, b and c in R. A semiring R is said to be additively commutative if a+b = b+a for all a, b and c in R. A semiring R may have an identity 1, defined by 1. a = a = a. 1 and a zero 0, defined by 0+a = a = a+0 and a.0 = 0 = 0.a for all a in R. A semiring R is said to be a hemiring if it is an additively commutative with zero. After the introduction of fuzzy sets by L.A.Zadeh[22], several researchers explored on the generalization of the concept of fuzzy sets. The notion of anti fuzzy left h-ideals in hemiring was introduced by Akram.M and K.H.Dar [1]. The notion of homomorphism and anti-homomorphism of fuzzy and anti-fuzzy ideal of a ring was introduced by N.Palaniappan & K.Arjunan [11], [12]. In this paper, we introduce the some Theorems in anti (T, S)-fuzzy normal ideal and translations of anti S-fuzzy subhemiring of a hemiring.

1.PRELIMINARIES:

1.1 Definition: A (T, S)-norm is a binary operations T: $[0, 1] \times [0, 1] \rightarrow [0, 1]$ and

[0, 1] satisfying the following requirements;

(i) T(0, x) = 0, T(1, x) = x (boundary condition)

(ii) T(x, y) = T(y, x) (commutativity)

(iii) T(x, T(y, z)) = T(T(x,y), z)(associativity)

(iv) if $x \le y$ and $w \le z$, then $T(x, w) \le T(y, z)$ (monotonicity).

(v) S(0, x) = x, S(1, x) = 1 (boundary condition)

(vi) S(x, y) = S(y, x)(commutativity)

(vii) S (x, S(y, z))= S (S(x, y), z) (associativity)

(viii) if $x \le y$ and $w \le z$, then S (x, w) \le S (y, z)(monotonicity).

1.2 Definition: Let (R, +, .) be a hemiring. A fuzzy subset A of R is said to be an anti S-fuzzy subhemiring (anti fuzzy subhemiring with respect to S-norm) of R if it satisfies the following conditions:

(i) $\mu_A(x + y) \le S(\mu_A(x), \mu_A(y)),$

(ii) $\mu_A(xy) \leq S(\mu_A(x), \mu_A(y))$, for all x and y in R.

1.3 Definition: Let (R, +, .) be a hemiring. A fuzzy subset A of R is said to be an anti (T, S)-fuzzy ideal (anti fuzzy ideal with respect to (T, S)-norm) of R if it satisfies the following conditions:

(i) $\mu_A(x + y) \le S (\mu_A(x), \mu_A(y)),$

(ii) $\mu_A(xy) \leq T (\mu_A(x), \mu_A(y))$, for all x and y in R.

1.4 Definition: Let A and B be fuzzy subsets of sets G and H, respectively. The anti-product of A and B, denoted by A×B, is defined as A×B ={((x, y), $\mu_{A\times B}(x,y)$) / for all x∈G and y∈H }, where $\mu_{A\times B}(x, y) = \max\{\mu_A(x), \mu_B(y)\}$.

1.5 Definition: Let A be a fuzzy subset in a set S, the anti-strongest fuzzy relation on S, that is a fuzzy relation on A is V given by $\mu_V(x, y) = \max\{ \mu_A(x), \mu_A(y) \}$, for all x and y in S.

 $S: [0, 1] \times [0, 1] \rightarrow$

1.6 Definition: Let R and R' be any two hemirings. Let $f: R \to R'$ be any function and A be an anti (T, S)-fuzzy ideal in R, V be an anti (T, S)-fuzzy ideal in f(R) = R', defined by $\mu_V(y) = \inf_{x \in f^{-1}(y)} \mu_A(x)$, for all $x \in R$, $y \in R'$.

Then A is called a preimage of V under f and is denoted by $f^{1}(V)$.

1.7 Definition: Let A be a fuzzy subset of X. For α in [0, 1], the lower level subset of A is the set $A_{\alpha} = \{x \in X : \mu_A(x) \le \alpha\}$.

1.8 Definition: Let (R, +, .) be a hemiring. An anti (T, S)-fuzzy ideal A of R is said to be an anti (T, S)-fuzzy normal ideal of R if $\mu_A(xy) = \mu_A(yx)$, for all x, y in R.

1.9 Definition: Let A be a fuzzy subset of X and

 $\alpha \in [0, 1 - \sup\{A(x) : x \in X, 0\}$

< A(x) < 1 }]. Then T = T_{α}^{A} is called a **translation** of A if T(x) = A(x) + α , for all x in X.

II. Properties:

2.1 Theorem: Let (R, +, .) be a hemiring. If A and B are two anti (T, S)-fuzzy normal ideals of R. Then A \cup B is an anti (T, S)-fuzzy normal ideal of R.

Proof: Let x, $y \in R$. Let A = { $\langle x, \mu_A(x) \rangle / x \in R$ } and B = { $\langle x, \mu_B(x) \rangle / x \in R$ } be anti (T, S)-fuzzy normal ideals of a hemiring R. Let C = A \cup B and C = { $\langle x, \mu_C(x) \rangle / x \in R$ }, where $\mu_C(x) = \max\{ \mu_A(x), \mu_B(x) \}$. Then, Clearly C is an anti (T, S)-fuzzy ideal of a hemiring R, since A and B are two anti (T, S)-fuzzy ideals of the hemiring R. And, $\mu_C(xy) = \max\{ \mu_A(xy), \mu_B(xy) \} = \max\{ \mu_A(yx), \mu_B(yx) \} = \max\{ \mu_A(yx), \mu_B(yx) \} = \mu_C(yx)$, for all x and y in R. Therefore, $\mu_C(xy) = \mu_C(yx)$, for all x and y in R. Hence A \cup B is an anti (T, S)-fuzzy normal ideal of the hemiring R.

2.2 Theorem: Let (R, +, .) be a hemiring. The union of a family of anti (T, S)-fuzzy normal ideals of R is an anti (T, S)-fuzzy normal ideal of R. **Proof:** It is trivial.

2.3 Theorem: Let A and B be anti (T, S)-fuzzy ideals of the hemirings G and H, respectively. If A and B are anti (T, S)-fuzzy normal ideals, then A×B is an anti (T, S)-fuzzy normal ideal of G×H.

Proof: Let A and B be anti (T, S)-fuzzy normal ideals of the hemirings G and H respectively. Clearly A×B is an anti (T, S)-fuzzy ideal of G×H. Let x_1, x_2 be in Gand y_1 and y_2 be in H. Then (x_1, y_1) and (x_2, y_2) are in G×H. Now, $\mu_{A\times B} [(x_1, y_1)(x_2, y_2)] = \mu_{A\times B} (x_1x_2, y_1y_2) = \max \{ \mu_A(x_1x_2), \mu_B(y_1y_2) \} = \max \{ \mu_A(x_2x_1), \mu_B(y_2y_1) \} = \mu_{A\times B} [(x_2, y_2)(x_1, y_1)]$. Therefore, $\mu_{A\times B} [(x_1, y_1)(x_2, y_2)(x_1, y_1)]$. Hence A×B is an anti (T, S)-fuzzy normal ideal of G×H.

2.4 Theorem: Let A and B be anti (T, S)-fuzzy normal ideal of the hemirings R_1 and R_2 respectively. Suppose that 0 and 0_1 are the zero element of R_1 and R_2 respectively. If A×B is an anti (T, S)-fuzzy normal ideal of $R_1 \times R_2$, then at least one of the following two statements must hold. (i) $B(0_1) \le A(x)$, for all x in R_1 ,

(i) $A(0) \le B(y)$, for all y in R₂. **Proof:** It is trivial.

2.5 Theorem: Let A and B be two fuzzy subsets of the hemirings R_1 and R_2 respectively and A×B is an anti (T, S)-fuzzy normal ideal of $R_1 \times R_2$. Then the following are true:

(i) if $A(x) \ge B(0_1)$, then A is an anti (T, S)-fuzzy normal ideal of R_1 .

(ii) if $B(x) \ge A(0)$, then B is an anti (T, S)-fuzzy normal ideal of R_2 .

(iii) either A is an anti (T, S)-fuzzy normal ideal of R_1 or B is an anti (T, S)-fuzzy normal ideal of R_2 . **Proof:** It is trivial.

2.6 Theorem: Let A be a fuzzy subset in a hemiring R and V be the anti-strongest fuzzy relation on R. Then A is an anti (T, S)-fuzzy normal ideal of R if and only if V is an anti (T, S)-fuzzy normal ideal of $R \times R$. **Proof:** It is trivial.

2.7 Theorem: Let (R, +, .) and $(R^{1}, +, .)$ be any two hemirings. The homomorphic image of an anti (T, S)-fuzzy normal ideal of R is an anti (T, S)-fuzzy normal ideal of R¹.

Proof: Let (R, +, .) and (R', +, .) be any two hemirings and $f : R \to R'$ be a homomorphism. Then, f(x+y) = f(x)+f(y) and f(xy) = f(x)f(y), for all x and y in R. Let V = f(A), where A is an anti (T, S)-fuzzy normal ideal of a hemiring R. We have to prove that V is an anti (T, S)-fuzzy normal ideal of a hemiring R'.Now, for f(x), f(y) in R', clearly V is an anti (T, S)-fuzzy ideal of a hemiring R', since A is an anti S-fuzzy ideal of a hemiring R.

Now, $\mu_v(f(x)f(y)) = \mu_v(f(xy)) \le \mu_A(xy) = \mu_A(yx) \ge \mu_v(f(yx)) = \mu_v(f(y)f(x))$, which implies that $\mu_v(f(x)f(y)) = \mu_v(f(y)f(x))$, for all f(x) and f(y) in \mathbb{R}^1 . Hence V is an anti (T, S)-fuzzy normal ideal of a hemiring \mathbb{R}^1 .

2.8 Theorem: Let (R, +, .) and (R', +, .) be any two hemirings. The homomorphic preimage of an anti (T, S)-fuzzy normal ideal of R' is an anti (T, S)-fuzzy normal ideal of R.

Proof: Let (R, +, .) and $(R^{l}, +, .)$ be any two hemirings and $f: R \rightarrow R^{l}$ be a homomorphism. Then, f(x+y) = f(x)+f(y) and f(xy) = f(x) f(y), for all x and y in R. Let V = f(A), where V is an anti (T, S)-fuzzy normal ideal of a hemiring R^l. We have to prove that A is an anti (T, S)-fuzzy normal ideal of a hemiring R. Let x and y in R. Then, clearly A is an anti (T, S)-fuzzy ideal of a hemiring R, since V is an anti (T, S)-fuzzy ideal of a hemiring R^l. Now, $\mu_A(xy) = \mu_v(f(xy)) = \mu_v(f(x)f(y)) = \mu_v(f(y)f(x)) = \mu_v(f(yx))$, which implies that $\mu_A(xy) = \mu_A(yx)$, for all x and y in R. Hence A is an anti (T, S)-fuzzy normal ideal of a hemiring R.

2.9 Theorem: Let (R, +, .) and $(R^{l}, +, .)$ be any two hemirings. The anti-homomorphic image of an anti (T, S)-fuzzy normal ideal of R is an anti (T, S)-fuzzy normal ideal of R^l.

Proof: Let (R, +, .) and (R', +, .) be any two hemirings and $f : R \to R'$ be an anti-homomorphism. Then, f(x+y) = f(y) + f(x) and f(xy) = f(y) f(x), for all x and y in R. Let V = f(A), where A is an anti (T, S)-fuzzy normal ideal of a hemiring R. We have to prove that V is an anti (T, S)-fuzzy normal ideal of a hemiring R¹. Now, for f(x) and f(y) in R¹, clearly V is an anti (T, S)-fuzzy ideal of a hemiring R¹, since A is an anti (T, S)-fuzzy ideal of a hemiring R. Now, $\mu_v(f(x)f(y)) = \mu_v(f(yx)) \le \mu_A(yx) = \mu_A(xy) \ge \mu_v(f(xy)) = \mu_v(f(y)f(x))$, which implies that $\mu_v(f(x)f(y) = \mu_v(f(y)f(x))$, for all f(x) and f(y) in R¹. Hence V is an anti (T, S)-fuzzy normal ideal of a hemiring R¹.

2.10 Theorem: Let (R, +, .) and (R', +, .) be any two hemirings. The anti-homomorphic preimage of an anti (T, S)-fuzzy normal ideal of R' is an anti (T, S)-fuzzy normal ideal of R.

Proof: Let (R, +, .) and $(R^{l}, +, .)$ be any two hemirings and $f: R \rightarrow R^{l}$ be an anti-homomorphism. Then, f(x+y) = f(y) + f(x) and f(xy) = f(y) f(x), for all x and y in R. Let V = f(A), where V is an anti (T, S)-fuzzy normal ideal of a hemiring R^l. We have to prove that A is an anti (T, S)-fuzzy normal ideal of a hemiring R.Let x and y in R, then, clearly A is an anti (T, S)-fuzzy ideal of a hemiring R, since V is an anti (T, S)-fuzzy ideal of a hemiring R^l. Now, $\mu_A(xy) = \mu_v(f(xy)) = \mu_v(f(x)f(x)) = \mu_v(f(x)f(y)) = \mu_v(f(yx)) = \mu_A(yx)$, which implies that $\mu_A(xy) = \mu_A(yx)$, for all x and y in R. Hence A is an anti (T, S)-fuzzy normal ideal of a hemiring R.

In the following Theorem • is the composition operation of functions:

2.11 Theorem: Let A be an anti (T, S)-fuzzy ideal of a hemiring H and f is an isomorphism from a hemiring R onto H. If A is an anti (T, S)-fuzzy normal ideal of the hemiring H, then $A \circ f$ is an anti (T, S)-fuzzy normal ideal of the hemiring R.

Proof: Let x, y in R and A be an anti (T, S)-fuzzy normal ideal of a hemiring H. Then, clearly A of is an anti (T, S)-fuzzy ideal of a hemiring R. Now, $(\mu_A \circ f)(xy) = \mu_A(f(xy)) = \mu_A(f(x)f(y)) = \mu_A(f(y)f(x)) = \mu_A(f(yx)) = (\mu_A \circ f)(yx)$, which implies that $(\mu_A \circ f)(xy) = (\mu_A \circ f)(yx)$, for all x and y in R. Hence A of is an anti (T, S)-fuzzy normal ideal of a hemiring R.

2.12 Theorem: Let A be an anti (T, S)-fuzzy ideal of a hemiring H and f is an anti-isomorphism from a hemiring R onto H. If A is an anti (T, S)-fuzzy normal ideal of the hemiring H, then A \circ f is an anti (T, S)-fuzzy normal ideal of the hemiring R.

Proof: Let x, y in R and A be an anti (T, S)-fuzzy normal ideal of a hemiring H. Then, clearly A°f is anti (T, S)-fuzzy ideal of the hemiring R. Now, $(\mu_A \circ f)(xy) = \mu_A(f(xy)) = \mu_A(f(y)f(x)) = \mu_A(f(x)f(y)) = \mu_A(f(yx)) = (\mu_A \circ f)(yx)$, which implies that $(\mu_A \circ f)(xy) = (\mu_A \circ f)(yx)$, for all x and y in R. Hence A°f is an anti (T, S)-fuzzy normal ideal of the hemiring R.

2.13 Theorem: The homomorphic image of a lower level ideal of an anti (T, S)-fuzzy normal ideal of a hemiring R is a lower level ideal of an anti (T, S)-fuzzy normal ideal of a hemiring R¹. **Proof:** It is trivial.

2.14 Theorem: The homomorphic pre-image of a lower level ideal of an anti (T, S)-fuzzy normal ideal of a hemiring R¹ is a lower level ideal of an anti (T, S)-fuzzy normal ideal of a hemiring R. **Proof:** It is trivial.

2.15 Theorem: The anti-homomorphic image of a lower level ideal of an anti (T, S)-fuzzy normal ideal of a hemiring R is a lower level ideal of an anti (T, S)-fuzzy normal ideal of a hemiring R^{\dagger} .

Proof: It is trivial.

2.16 Theorem: The anti-homomorphic pre-image of a lower level ideal of an anti (T, S)-fuzzy normal ideal of a hemiring R¹ is a lower level ideal of an anti (T, S)-fuzzy normal ideal of a hemiring R. **Proof:** It is trivial.

2.17 Theorem: If M and N are two translations of anti S-fuzzy subhemiring A of a hemiring (R, +, .), then their intersection $M \cap N$ is translation of anti S-fuzzy subhemiring A.

Proof: Let x and y belong to R. Let $M = T_{\alpha}^{A} = \{ \langle x, \mu_{A}(x) + \alpha \rangle / x \text{ in } R \}$ and $N = T_{\gamma}^{A} = \{ \langle x, \mu_{A}(x) + \gamma \rangle / x \text{ in } R \}$ be two translations of anti S-fuzzy subhemiring A of a hemiring (R, +, .). Let $C = M \cap N$ and $C = \{ \langle x, \mu_{C}(x) \rangle / x \text{ in } R \}$, where $\mu_{C}(x) = \min\{\mu_{A}(x)+\alpha, \mu_{A}(x)+\gamma\}$. **Case (i):** $\alpha \leq \gamma$. Now, $\mu_{C}(x+y) = \min\{\mu_{M}(x+y), \mu_{N}(x+y)\} = \min\{\mu_{A}(x+y) + \alpha, \mu_{A}(x)+\gamma\} + \alpha = \mu_{M}(x+y)$, for all x and y in R. And, $\mu_{C}(xy) = \min\{\mu_{M}(xy), \mu_{N}(xy)\} = \min\{\mu_{A}(xy) + \alpha, \mu_{A}(xy) + \gamma\} = \mu_{A}(xy) + \alpha = \mu_{M}(xy)$, for all x and y in R. Therefore $C = T_{\alpha}^{A} = \{\langle x, \mu_{A}(x)+\alpha \rangle / x \text{ in } R \}$ is a translation of anti S-fuzzy subhemiring A of the hemiring (R, +, .). **Case (ii):** $\alpha \geq \gamma$. Now, $\mu_{C}(x+y) = \min\{\mu_{M}(x+y), \mu_{N}(x+y)\} = \min\{\mu_{A}(x+y) + \alpha, \mu_{A}(x+y) + \gamma\} = \mu_{A}(x+y) + \gamma = \mu_{N}(x+y)$, for all x and y in R. Therefore $C = T_{\alpha}^{A} = \{\langle x, \mu_{A}(x)+\alpha \rangle / x \text{ in } R \}$ is a translation of anti S-fuzzy subhemiring A of the hemiring (R, +, .). **Case (ii):** $\alpha \geq \gamma$. Now, $\mu_{C}(x+y) = \min\{\mu_{M}(x+y), \mu_{N}(x+y)\} = \min\{\mu_{A}(x+y) + \alpha, \mu_{A}(x+y) + \gamma\} = \mu_{A}(x+y) + \gamma = \mu_{N}(x+y)$, for all x and y in R. And $\mu_{C}(xy) = \min\{\mu_{M}(xy), \mu_{N}(xy)\} = \min\{\mu_{A}(xy) + \alpha, \mu_{A}(xy) + \gamma\} = \mu_{A}(xy) + \gamma = \mu_{N}(xy)$, for all x and y in R. Therefore $C = T_{\gamma}^{A} = \{\langle x, \mu_{A}(x) + \gamma \rangle / x \text{ in } R\}$ is a translation of anti S-fuzzy subhemiring A of the hemiring (R, +, .). Hence all cases, intersection of any two translations of anti S-fuzzy subhemiring A of a hemiring (R, +, .). Hence all cases, intersection of any two translations of anti S-fuzzy subhemiring A of a hemiring (R, +, .) is also a translation of anti S-fuzzy subhemiring A.

2.18 Theorem: The intersection of a family of translations of anti S-fuzzy subhemiring A of a hemiring $(R, +, \cdot)$ is also a translation of anti S-fuzzy subhemiring A. **Proof:** It is trivial.

2.19 Theorem: If M and N are two translations of anti S-fuzzy subhemiring A of a hemiring $(R, +, \cdot)$, then their union $M \cup N$ is also a translation of anti S-fuzzy subhemiring A.

Proof: Let x and y belong to R. Let $M = T_{\alpha}^{A} = \{\langle x, \mu_{A}(x) + \alpha \rangle / x \text{ in } R\}$ and $N = T_{\gamma}^{A} = \{\langle x, \mu_{A}(x) + \gamma \rangle / x \text{ in } R\}$ be two translations of anti S-fuzzy subhemiring A of a hemiring (R, +, .). Let $C = M \cup N$ and $C = \{\langle x, \mu_{C}(x) \rangle / x \text{ in } R\}$, where $\mu_{C}(x) = \max\{\mu_{A}(x) + \alpha, \mu_{A}(x) + \gamma\}$. **Case (i):** $\alpha \leq \gamma$. Now, $\mu_{C}(x+y) = \max\{\mu_{M}(x+y), \mu_{N}(x+y)\} = \max\{\mu_{A}(x+y) + \alpha, \mu_{A}(x+y) + \gamma\} = \mu_{A}(x+y) + \gamma = \mu_{N}(x+y)$, for all x and y in R. And, $\mu_{C}(xy) = \max\{\mu_{M}(xy), \mu_{N}(xy)\} = \max\{\mu_{A}(xy) + \alpha, \mu_{A}(xy) + \gamma\} = \mu_{A}(xy) + \gamma = \mu_{N}(xy)$, for all x and y in R. Therefore $C = T_{\gamma}^{A} = \{\langle x, \mu_{A}(x) + \gamma \rangle / x \text{ in } R\}$ is a translation of anti S-fuzzy subhemiring A of a hemiring (R, +, .). **Case (ii):** $\alpha \geq \gamma$. Now, $\mu_{C}(x+y) = \max\{\mu_{M}(x+y), \mu_{N}(x+y)\} = \max\{\mu_{A}(x+y) + \alpha, \mu_{A}(x+y) + \gamma\} = \mu_{A}(x+y) + \alpha = \mu_{M}(x+y)$, for all x and y in R. And $\mu_{C}(xy) = \max\{\mu_{M}(xy), \mu_{N}(xy)\} = \max\{\mu_{A}(x) + \alpha, \mu_{A}(xy) + \alpha, \mu_{A}(xy) + \gamma\} = \mu_{A}(xy) + \alpha = \mu_{M}(xy)$, for all x and y in R. Therefore $C = T_{\alpha}^{A} = \{\langle x, \mu_{A}(x) + \alpha \rangle / x \text{ in } R\}$ is a translation of anti s-fuzzy subhemiring A of a hemiring (R, +, .). Hence all cases, union of any two translations of anti S-fuzzy subhemiring A of a hemiring (R, +, .) is also a translation of anti S-fuzzy subhemiring A.

2.20 Theorem: The union of a family of translations of anti S-fuzzy subhemiring A of a hemiring $(R, +, \cdot)$ is also a translation of anti S-fuzzy subhemiring A. **Proof:** It is trivial.

2.21 Theorem: If T_{α}^{A} is a translation of anti S-fuzzy subhemiring A of a hemiring R, then T_{α}^{A} is anti S-fuzzy subhemiring of R.

Proof: Assume that T_{α}^{A} is a translation of anti S-fuzzy subhemiring A of a hemiring R. Let x and y in R. We have, $T_{\alpha}^{A}(x+y) = A(x+y) + \alpha \leq S(A(x), A(y)) + \alpha \leq S(A(x) + \alpha, A(y) + \alpha) = S(T_{\alpha}^{A}(x), T_{\alpha}^{A}(y))$. Therefore, $T_{\alpha}^{A}(x+y) \leq S(T_{\alpha}^{A}(x), T_{\alpha}^{A}(y))$, for all x and y in R. And, $T_{\alpha}^{A}(xy) = A(xy) + \alpha \leq S(A(x), A(y)) + \alpha \leq S(A(x) + \alpha, A(y) + \alpha) = S(T_{\alpha}^{A}(x), T_{\alpha}^{A}(y))$. Therefore, $T_{\alpha}^{A}(xy) \geq S(T_{\alpha}^{A}(x), T_{\alpha}^{A}(y))$, for all x and y in R. Hence T_{α}^{A} is anti S-fuzzy subhemiring of R.

2.22 Theorem: Let (R, +, ...) and $(R^{l}, +, ...)$ be any two hemirings. If f: $R \rightarrow R^{l}$ is a homomorphism, then the translation of anti S-fuzzy subhemiring A of R under the homomorphic image is anti S-fuzzy subhemiring of $f(R) = R^{l}$.

Proof: Let (R, +, .) and (R', +, .) be any two hemirings and $f: R \rightarrow R'$ be a homomorphism. That is f(x+y) = f(x)+f(y) and f(xy) = f(x)f(y), for all x and y in R. Let T_{α}^{A} be a translation of anti S-fuzzy subhemiring A of R. Let V be the homomorphic image of T_{α}^{A} under f. We have to prove that V is anti S-fuzzy subhemiring of f(R) = R'. Now, for f(x) and f(y) in R', we have $V[f(x)+f(y)] = V[f(x+y)] \le T_{\alpha}^{A}(x+y) = A(x+y) + \alpha \le S(A(x), A(y)) + \alpha \le S(A(x) + \alpha, A(y) + \alpha) = S(T_{\alpha}^{A}(x), T_{\alpha}^{A}(y))$, which implies that $V[f(x)+f(y)] \le S(V(f(x)), V(f(y)))$, for all $f(x), f(y) \in R'$. And $V[f(x)f(y)] = V[f(xy)] \le T_{\alpha}^{A}(xy) = A(xy) + \alpha \le S(A(x), A(y)) + \alpha \le S(A(x) + \alpha, A(y) + \alpha) = S(T_{\alpha}^{A}(x), T_{\alpha}^{A}(y))$, which implies that $V[f(x)f(y)] \le S(V(f(x)), V(f(y))) + \alpha \le S(A(x) + \alpha, A(y) + \alpha) = S(T_{\alpha}^{A}(x), T_{\alpha}^{A}(y))$, which implies that $V[f(x)f(y)] \le S(V(f(x)), V(f(y))) + \alpha \le S(A(x) + \alpha, A(y) + \alpha) = S(T_{\alpha}^{A}(x), T_{\alpha}^{A}(y))$, which implies that $V[f(x)f(y)] \le S(V(f(x)), V(f(y))) + \alpha \le S(A(x) + \alpha, A(y) + \alpha) = S(T_{\alpha}^{A}(x), T_{\alpha}^{A}(y))$, which implies that $V[f(x)f(y)] \le S(V(f(x)), V(f(y)))$, for all f(x) and f(y) in R'. Therefore, V is an anti S-fuzzy subhemiring of R'.

2.23 Theorem: Let (R, +, .) and (R', +, .) be any two hemirings. If $f : R \to R'$ is a homomorphism, then the translation of an anti S-fuzzy subhemiring V of f(R) = R' under the homomorphic pre-image is an anti S-fuzzy subhemiring of R.

Proof: Let (R, +, .) and (R', +, .) be any two hemirings and $f: R \rightarrow R'$ be a homomorphism. That is f(x+y) = f(x) + f(y) and f(xy) = f(x)f(y), for all x and y in R. Let T_{α}^{V} be the translation of anti S-fuzzy subhemiring V of R' and A be the homomorphic pre-image of T_{α}^{V} under f. We have to prove that A is an anti S-fuzzy subhemiring of R. Let x and y be in R. Then, $A(x+y) = T_{\alpha}^{V}(f(x+y)) = T_{\alpha}^{V}(f(x)+f(y)) = V[f(x)+f(y)] + \alpha \le S(V(f(x)), V(f(y))) + \alpha \le S((V(f(x))+\alpha, V(f(y))+\alpha) = S(T_{\alpha}^{V}(f(x)), T_{\alpha}^{V}(f(x)))) = S(A(x), A(y))$, which implies that $A(x+y) \le S(A(x), A(y))$, for all x, y in R. And, $A(xy) = T_{\alpha}^{V}(f(x)), T_{\alpha}^{V}(f(x))f(y) = V[f(x)f(y)] + \alpha \le S(V(f(x)), V(f(y))) + \alpha \le S((V(f(x))+\alpha, V(f(y))+\alpha))) = S(T_{\alpha}^{V}(f(x)), T_{\alpha}^{V}(f(x))) = V[f(x)f(y)] + \alpha \le S(V(f(x)), V(f(y))) + \alpha \le S((V(f(x))+\alpha, V(f(y))+\alpha))) = S(T_{\alpha}^{V}(f(x))) = T_{\alpha}^{V}(f(x))$, which implies that $A(x+y) \le S(A(x), A(y))$, for all x, y in R. And, $A(xy) = T_{\alpha}^{V}(f(x)), T_{\alpha}^{V}(f(y)) = V[f(x)f(y)] + \alpha \le S(V(f(x)), V(f(y))) + \alpha \le S((V(f(x))+\alpha, V(f(y))) = S(T_{\alpha}^{V}(f(x))) = T_{\alpha}^{V}(f(x))) = S(A(x), A(y))$, which implies that $A(x+y) \le S(A(x), A(y))$, for all x, y in R. And, $A(xy) = T_{\alpha}^{V}(f(x)), T_{\alpha}^{V}(f(y)) = V[f(x)f(y)] + \alpha \le S(V(f(x))), V(f(y)) + \alpha \le S((V(f(x))+\alpha, V(f(y))) = S(T_{\alpha}^{V}(f(x))) = T_{\alpha}^{V}(f(x))) = S(A(x), A(y))$, which implies that $A(xy) \le S(A(x), A(y))$, for all x and y in R. Therefore, A is anti S-fuzzy subhemiring of R.

2.24 Theorem: Let (R, +, .) and $(R^{!}, +, .)$ be any two hemirings. If $f: R \rightarrow R^{!}$ is an anti-homomorphism, then the translation of an anti S-fuzzy subhemiring A of R under the anti-homomorphic image is an anti S-fuzzy subhemiring of $f(R) = R^{!}$.

Proof: Let (R, +, .) and (R', +, .) be any two hemirings and $f: R \to R'$ be an anti-homomorphism. That is f(x+y) = f(y)+ f(x) and f(xy) = f(y)f(x), for all x and y in R. Let T^A_{α} be the translation of an anti S-fuzzy

subhemiring A of R and V be the anti-homomorphic image of T_{α}^{A} under f. We have to prove that V is an anti S-fuzzy subhemiring of f (R) = R¹. Now, for f(x) and f(y) in R¹ and q in Q, we have, V[f(x)+f(y)] = V[f(y+x)] \le T_{\alpha}^{A} (y+x) = A (y+x) + $\alpha \le$ S (A(x), A(y)) + $\alpha \le$ S (A(x) + α , A(y)+ α) = S (T_{α}^{A} (x), T_{α}^{A} (y)), which

implies that V[f(x) + f(y)] \leq S(V(f(x)), V(f(y)), for all f(x), $f(y) \in \mathbb{R}^{I}$. And, V[f(x)f(y)] = V[f(yx)] $\leq T_{\alpha}^{A}(yx)$ =

 $A(yx) + \alpha \le S(A(x), A(y)) + \alpha \le S(A(x) + \alpha, A(y) + \alpha) = S(T_{\alpha}^{A}(x), T_{\alpha}^{A}(y))$, which implies that $V[f(x)f(y)] \le S(V(f(x)), V(f(y)))$, for all f(x) and f(y) in R^{I} . Therefore, V is an anti S-fuzzy subhemiring of the hemiring R^{I} . Hence the anti-homomorphic image of translation of A of R is an anti S-fuzzy subhemiring of R^{I} .

2.25 Theorem: Let (R, +, .) and $(R^{\dagger}, +, .)$ be any two hemirings. If f: $R \rightarrow R^{\dagger}$ is an anti-homomorphism, then the translation of an anti S-fuzzy subhemiring V of f $(R) = R^{\dagger}$ under the anti-homomorphic pre-image is an anti S-fuzzy subhemiring of R.

Proof: Let (R, +, .) and (R', +, .) be any two hemirings and f: $R \to R'$ be an anti-homomorphism. That is f(x+y) = f(y)+f(x) and f(xy) = f(y)f(x), for all x and y in R. Let T_{α}^{V} be the translation of an anti S-fuzzy subhemiring V of f(R) = R' and A be the anti-homomorphic pre-image of T_{α}^{V} under f. We have to prove that A is an anti S-fuzzy subhemiring of R. Let x and y be in R. Then, $A(x+y) = T_{\alpha}^{V}(f(x+y)) = T_{\alpha}^{V}[f(y)+f(x)] = V[f(x)]$

 $\begin{aligned} (y)+f(x)] + \alpha &\leq S(V(f(x)), V(f(y))) + \alpha &\leq S(V(f(x))+\alpha, V(f(y))+\alpha) = S(T_{\alpha}^{V}(f(x))), T_{\alpha}^{V}(f(y))) = S(A(x), A(y)), \end{aligned}$ $\begin{aligned} A(y) \), \ \text{which implies that} \quad A(x+y) &\leq S(A(x), A(y), \ \text{for all } x \ \text{and } y \ \text{in } R. \ \text{And, } A(xy) = T_{\alpha}^{V}(f(xy))) = T_{\alpha}^{V}(f(y)f(x)) = V[f(y)f(x)] + \alpha &\leq S(V(f(x)), V(f(y))) + \alpha &\leq S(V(f(x))+\alpha, V(f(y))+\alpha) = S(T_{\alpha}^{V}(f(x))), T_{\alpha}^{V}(f(y))) = S(A(x), A(y)), \ \text{which implies that} \ A(xy) &\leq S(A(x), A(y), \ \text{for all } x \ \text{and } y \ \text{in } R. \ \text{Therefore, } A \ \text{is an anti } S-fuzzy \ \text{subhemiring of } R. \end{aligned}$

2.26 Theorem: If M and N are two translations of an anti S-fuzzy normal subhemiring A of a hemiring (R, +, .), then their intersection $M \cap N$ is also a translation of A. **Proof:** It is trivial.

2.27 Theorem: The intersection of a family of translations of an anti S-fuzzy normal subhemiring A of a hemiring (R, +, .) is a translation of A. **Proof:** It is trivial.

2.28 Theorem: If M and N are two translations of an anti S-fuzzy normal subhemiring A of a hemiring (R, +, .), then their union $M \cup N$ is also a translation of A. **Proof:** It is trivial.

2.29 Theorem: The union of a family of translations of an anti S-fuzzy normal subhemiring A of a hemiring (R, +, .) is also a translation of A. **Proof:** It is trivial.

2.30 Theorem: Let (R, +, .) and $(R^{!}, +, .)$ be any two hemirings. If $f : R \to R^{!}$ is a homomorphism, then the translation of an anti S-fuzzy normal subhemiring A of R under the homomorphic image is an anti S-fuzzy normal subhemiring of $f(R) = R^{!}$.

Proof: Let (R, +, .) and (R', +, .) be any two hemirings and $f: R \to R'$ be a homomorphism. That is f(x+y) = f(x)+f(y) and f(xy) = f(x)f(y), for all x and y in R. Let T^A_{α} be the translation of an anti S-fuzzy normal

subhemiring A of R and V be the homomorphic image of T_{α}^{A} under f. We have to prove that V is an anti S-fuzzy normal subhemiring of R¹. Now, for f(x) and f(y) in R¹, clearly V is an anti S-fuzzy subhemiring of R¹. We have $V(f(x)f(y)) = V(f(xy)) \le T_{\alpha}^{A}(xy) = A(xy) + \alpha = A(yx) + \alpha = T_{\alpha}^{A}(yx) \ge V(f(yx)) = V(f(y) f(x))$, which implies that V(f(x)f(y)) = V(f(y)f(x)), for all f(x) and f(y) in R¹. Therefore, V is an anti S-fuzzy normal subhemiring of the hemiring R¹.

2.31 Theorem: Let (R, +, .) and $(R^{\dagger}, +, .)$ be any two hemirings. If $f : R \to R^{\dagger}$ is a homomorphism, then translation of an anti S-fuzzy normal subhemiring V of $f(R) = R^{\dagger}$ under the homomorphic pre-image is an anti S-fuzzy normal subhemiring of R.

Proof: Let (R, +, .) and $(\overline{R}^{!}, +, .)$ be any two hemirings and $f: R \to R^{!}$ be a homomorphism. That is f(x+y) = f(x)+f(y) and f(xy) = f(x)f(y), for all x and y in R. Let T_{α}^{V} be the translation of an anti S-fuzzy normal subhemiring V of R[!] and A be the homomorphic pre-image of T_{α}^{V} under f. We have to prove that A is an anti S-fuzzy normal subhemiring of R. Let x and y be in R. Then, clearly A is an anti S-fuzzy subhemiring of R, $A(xy) = T_{\alpha}^{V}(f(xy)) = V(f(xy)) + \alpha = V(f(x)f(y)) + \alpha = V(f(y)f(x)) + \alpha = V(f(yx)) + \alpha = T_{\alpha}^{V}(f(yx)) = A(yx)$, which implies that A(xy) = A(yx), for all x and y in R. Therefore, A is an anti S-fuzzy normal subhemiring of R.

2.32 Theorem: Let (R, +, .) and $(R^{!}, +, .)$ be any two hemirings. If $f: R \to R^{!}$ is an anti-homomorphism, then the translation of an anti S-fuzzy normal subhemiring A of R under the anti-homomorphic image is an anti S-fuzzy normal subhemiring of $R^{!}$.

Proof: Let (R, +, .) and (R', +, .) be any two hemirings and $f : R \to R'$ be an anti-homomorphism. That is f(x+y) = f(y)+f(x) and f(xy) = f(y)f(x), for all x and y in R. Let T_{α}^{A} be the translation of an anti S-fuzzy normal subhemiring A of R and V be the anti-homomorphic image of T_{α}^{A} under f. We have to prove that V is an anti S-fuzzy normal subhemiring of f(R) = R'. Now, for f(x) and f(y) in R', clearly V is an anti S-fuzzy subhemiring

of R¹. We have, V($f(x)f(y) = V(f(yx)) \le T_{\alpha}^{A}(yx) = A(yx) + \alpha = A(xy) + \alpha = T_{\alpha}^{A}(xy) \ge V(f(xy)) = V(f(y)f(x))$, which implies that V(f(x)f(y)) = V(f(y)f(x)), for f(x) and f(y) in R¹. Therefore, V is an anti S-fuzzy normal subhemiring of the hemiring R¹.

2.33 Theorem: Let (R, +, .) and (R', +, .) be any two hemirings. If $f : R \to R'$ is an anti-homomorphism, then the translation of an anti S-fuzzy normal subhemiring V of f(R) = R' under the anti-homomorphic pre-image is an anti S-fuzzy normal subhemiring of R.

Proof: Let (R, +, .) and $(R^{!}, +, .)$ be any two hemirings and $f: R \to R^{!}$ be an anti-homomorphism. That is f(x + y) = f(y) + f(x) and f(xy) = f(y)f(x), for all x and y in R. Let T_{α}^{V} be the translation of an anti S-fuzzy normal subhemiring V of R[!] and A be the anti-homomorphic pre-image of T_{α}^{V} under f. We have to prove that A is an anti S-fuzzy normal subhemiring of R. Let x and y be in R. Then, clearly A is an anti S-fuzzy subhemiring of R, $A(xy) = T_{\alpha}^{V}(f(xy)) = V(f(xy)) + \alpha = V(f(y)f(x)) + \alpha = V(f(x)f(y)) + \alpha = V(f(yx)) + \alpha = T_{\alpha}^{V}(f(yx)) = A(yx)$, which implies that A(xy) = A(yx), for all x and y in R. Therefore, A is an anti S-fuzzy normal subhemiring of R.

References

- [1]. Akram . M and K.H.Dar , 2007. On Anti Fuzzy Left h-ideals in Hemirings, International Mathematical Forum, 2(46): 2295 2304.
- [2]. Anthony J.M. and H Sherwood, 1979. Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69:124-130.
- [3]. Asok Kumer Ray, 1999. On product of fuzzy subgroups, fuzzy sets and sysrems, 105 : 181-183.
- [4]. Azriel Rosenfeld,1971. Fuzzy Groups, Journal of mathematical analysis and applications, 35:512-517.
- [5]. Biswas.R, 1990.Fuzzy subgroups and Anti-fuzzy subgroups, Fuzzy sets and systems, 35:121-124.
- [6]. Choudhury.F.P, A.B.Chakraborty and S.S.Khare, 1988. A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications, 131:537-553.
- [7]. Dixit.V.N., Rajesh Kumar and Naseem Ajmal, 1990. Level subgroups and union of fuzzy subgroups, Fuzzy Sets and Systems, 37: 359-371.
- [8]. Kumbhojkar.H.V., and M.S. Bapat, 1991. Correspondence theorem for fuzzy ideals, Fuzzy sets and systems .
- [9]. Mohamed Asaad ,1991. Groups and fuzzy subgroups, fuzzy sets and systems , North-Holland.
- [10]. Mustafa Akgul,1988. Some properties of fuzzy groups, Journal of mathematical analysis and applications, 133: 93-100.
- [11]. Palaniappan. N & K. Arjunan, 2008. The homomorphism, anti homomorphism of a fuzzy and an anti fuzzy ideals of a ring, Varahmihir Journal of Mathematical Sciences, 6(1): 181-006.
- [12]. Palaniappan. N & K. Arjunan, 2007. Operation on fuzzy and anti fuzzy ideals, Antartica J. Math., 4(1): 59-64.
- [13]. Prabir Bhattacharya, 1987. Fuzzy Subgroups: Some Characterizations, Journal of Mathematical Analysis and Applications, 128: 241-252.
- [14]. Rajesh Kumar, 1991. Fuzzy irreducible ideals in rings, Fuzzy Sets and Systems, 42: 369-379.
- [15]. Rajesh Kumar, 1993. Fuzzy Algebra, University of Delhi Publication Division, Volume 1 .
- [16]. Salah Abou-Zaid, 1991. On generalized characteristic fuzzy subgroups of a finite group, fuzzy sets and systems, 235-241.
- [17]. Sidky F.I and M Atif Mishref, 1991. Fuzzy cosets and cyclic and Abelian fuzzy subgroups, fuzzy sets and systems, 43:243-250
- [18]. Sivaramakrishna das.P, 1981. Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applications, 84 : 264-269.
- [19]. Sung Min Hong, Young Bae Jun and Hee Sik Kim, 1998. Fuzzy ideals in Nearrings, Bull.Korean Math.Soc. 35(3):455-464.
- [20]. Vasantha kandasamy W.B , 2003. Smarandache fuzzy algebra, American research press , Rehoboth.
- [21]. Xueling MA . Jianming ZHAN , 2007. On Fuzzy h Ideals of hemirings, Journal of Systems science & Complexity, 20: 470 478.
- [22]. Zadeh .L.A, Fuzzy sets, 1965. Information and control, 8: 338-353.