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Abstract: The concept of locally dually flat Finsler metrics are originated from information geometry. As we 

know,  𝛼, 𝛽 -metrics defined by a Riemannian metric 𝛼 and 1-form  𝛽 form an important class of Finsler 

metrics. In this paper, we study and characterize Locally dually flat Matsumoto metric 𝐹 = 𝛼2/𝛼 −  𝛽 with 
isotropic S-curvature which is not Riemannian. 
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I. Introduction 
The notion of dually flat metrics was first introduced by Amari S.I and H.Nagaoka when they study the 

information geometry on Riemannian spaces [1]. Later Z.Shen extends the notion of dually flatness to Finsler 

metrics [8]. Dually flat Finsler metrics form a special and valuable class of Finsler metrics in Finsler 

information geometry, which play a very important role in studying flat Finsler information structure 

([3],[4],[10],[11],[12]). 

In 2009, the authors [3] classified the locally dual flat Randers metrics with almost isotropic flag 

curvature. Recently, Xia.Q worked on the dual flatness of Finsler metrics of isotropic  flag  curvature as well as 

scalar flag curvature ([11],[12]). Also, Xia studied and gave a characterization of locally dually flat (𝛼, 𝛽)-

metrics on an n-dimensional manifold M (𝑛 ≥ 3)[10]. 

The first example of non-Riemannian dually flat metrics is the Funk metric given as follows([3],[8]): 

𝐹 =
  1 −  𝑥 2  𝑦 2 + 〈𝑋, 𝑌〉2

1 −  𝑥 2
±

〈𝑋,𝑌〉

1 −  𝑥 2
 

This metric is defined on the unit ball 𝐵𝑛 ⊂ 𝑅𝑛  and is a Randers metric with constant flag Curvature  𝐾 = −
1

4
. 

This is only known example of locally dually flat metrics with non-zero constant flag curvature up to now. 

In this paper, we study and characterize locally dually flat Matsumoto metric with isotropic S-curvature 

which is not Riemannian. 

 

II.  Preliminaries 
Let M be an n-dimensional smooth manifold. We denote by TM  the tangent bundle of M and by 

 𝑥,𝑦 = (𝑥𝑖 ,𝑦𝑖) the local coordinates on the tangent bundle TM. A Finlser manifold (𝑀, 𝐹) is a smooth 

manifold equipped with a function 𝐹: 𝑇𝑀 → [0, ∞)which has the following properties: 

• Regularity: F is smooth in 𝑇𝑀\{0}; 
• Positively homogeneity: 𝐹 𝑥, 𝜆𝑦 = 𝜆𝐹 𝑥, 𝑦 ,𝑓𝑜𝑟 𝜆 > 0; 

• Strong convexity: the Hessian matrix of 𝐹2,𝑔𝑖𝑗  𝑥, 𝑦 =
1

2
 
𝜕2𝐹2(𝑥 ,𝑦)

𝜕𝑦 𝑖𝜕𝑥 𝑖
 , , is positive definite on 𝑇𝑀\{0}. We call 

F and the tensor 𝑔𝑖𝑗  the Finsler metric and fundamental tensor of M respectively. 

 

For a Finsler metric 𝐹 =  𝐹(𝑥,𝑦), its geodesics curves are characterized by the system of differential 

equations 𝑐 𝑖 + 2𝐺𝑖 𝑐  = 0, where the local functions 𝐺𝑖 = 𝐺𝑖 𝑥,𝑦  are called the spray coefficients and given 

by following 

 

𝐺𝑖 =
1

4
𝑔𝑖𝑙  

𝜕2 𝐹2  

𝜕𝑥𝑘𝜕𝑦 𝑙 𝑦
𝑘 −

𝜕 𝐹2 

𝜕𝑥 𝑙
 ,       𝑦 ∈ 𝑇𝑥𝑀. 

 

Definition 2.1: A Finsler metric 𝐹 =  𝐹(𝑥,𝑦) on a manifold M is said to be locally duallyflat if at any point 

there is a standard coordinate system  𝑥𝑖 , 𝑦𝑖  in TM which satisfies 

 

 𝐹2 𝑥𝑘𝑦 𝑙 = 2 𝐹2 𝑥 𝑙 . 

In this case, the coordinate (𝑥𝑖) is called an adapted local coordinate system. It is easy to see that every locally 

Minkowskian metric is locally dually flat. But the converse is not true[3]. 
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Definition 2.2: A Finsler metric is said to be locally projectively flat if at any point there is a local coordinate 

system in which the geodesics are straight lines as point sets. 

It is known that a Finsler metric 𝐹(𝑥,𝑦) on an open domain 𝑈 ⊂  ℝ𝑛  is locally projectively flat if and only if its 

geodesic coefficients 𝐺𝑖  are in the form 

 

𝐺𝑖 = 𝑃𝑦𝑖 , 
 

where 𝑃: 𝑇𝑈 = 𝑈 ×  ℝ𝑛 → ℝ is positively homogeneous with degree one, 𝑃 𝑥,𝜆𝑦 = 𝜆𝑃 𝑥, 𝑦 ,   𝜆 > 0. We call 

𝑃(𝑥,𝑦) the projective factor of 𝐹(𝑥, 𝑦). 
 

Lemma 2.1. [3]  Let F = F(x, y) be a  Finsler  metric on  an  open  subset 𝑈 ⊂  ℝ𝑛 .  Then  F is  locally flat  and  

projectively  flat on U if and only if  𝐹𝑥𝑘 = 𝐶𝐹𝐹𝑦𝑘 , where  C  is a constant. 

 

The S-curvature is a scalar function on TM, which was introduced by the Shen to study volume comparison in 

Riemann-Finsler geometry [9]. The S-curvature measures the average rate of change of   𝑇𝑥𝑀, 𝐹𝑥 = 𝐹|𝑇𝑥𝑀  in 

the direction 𝑦 ∈ 𝑇𝑥𝑀 . It is known that S=0 for Berwald metrics. 

 

Definition 2.3: A Finsler metric F on an n-dimensional manifold M is said to have isotropic S-curvature if 

isotropic 𝑆 = (𝑛 + 1)𝑐(𝑥)𝐹, for some scalar function c on M. 
For a Finsler metric F on an n-dimensional manifold M, the Busemann-Hausdorff volume 

form 𝑑𝑉𝐹 = 𝜎𝐹 𝑥 𝑑𝑥
1 ………𝑑𝑥𝑛  is defined by 

𝜎 𝐹 =
𝑉𝑜𝑙(𝐵𝑛 (1))

𝑉𝑜𝑙   𝑦𝑖 ∈  ℝ𝑛 |𝐹  𝑦𝑖 𝜕
𝜕𝑥𝑖 |𝑥  

 

 

Here Vol denotes the Euclidean volumes and 𝐵𝑛(1) denotes the unit ball in  ℝ𝑛 .Then the S-curvature is defined 

by 

𝑆 𝑦 =
𝜕𝐺𝑖

𝜕𝑦𝑖
 𝑥, 𝑦 − 𝑦𝑖

𝜕

𝜕𝑥𝑖
 𝑙𝑛𝜎𝐹(𝑥)  

where 𝑦 = 𝑦𝑖 𝜕

𝜕𝑥 𝑖 |𝑥 ∈ 𝑇𝑥𝑀 [9]. 

 

For an (𝛼,𝛽)-metric 𝐹 = 𝛼𝜙 𝑠  where 𝑠 = 𝛽/𝛼 and 𝜙 = 𝜙 𝑠  is a 𝐶∞ function on the  −𝑏0 ,𝑏0  with certain 

regularity, 𝛼 =  𝑎𝑖𝑗 𝑦
𝑖𝑦 𝑗  is a Riemannian metric and 𝛽 = 𝑏𝑖 𝑥 𝑦

𝑖 is 1-form on M. 

Let us define 𝑏𝑖|𝑗  by 

𝑏𝑖|𝑗𝜃
𝑗 = 𝑑𝑏𝑖 − 𝑏𝑗𝜃𝑖

𝑗
, 

where 𝜃𝑖 = 𝑑𝑥𝑖  and 𝜃𝑖
𝑗

= Γ𝑖𝑘
𝑗
𝑑𝑥𝑘   denote the Levi- Civita connection form of 𝛼 . Let 

𝑟𝑖𝑗 =
1

2
 𝑏𝑖|𝑗 + 𝑏𝑗 |𝑖 ,        𝑠𝑖𝑗 =

1

2
 𝑏𝑖|𝑗 − 𝑏𝑗 |𝑖 . 

Clearly, 𝛽  is closed if and only if 𝑠𝑖𝑗 = 0. An  𝛼,𝛽 -metric is said to be trivial if 𝑟𝑖𝑗 = 𝑠𝑖𝑗 = 0. 

put 
 

𝑟𝑖0 = 𝑟𝑖𝑗 𝑦
𝑗 ,   𝑟00 = 𝑟𝑖𝑗 𝑦

𝑖𝑦𝑗 ,   𝑟𝑗 = 𝑏𝑖𝑟𝑖𝑗 , 

𝑠𝑖0 = 𝑠𝑖𝑗 𝑦
𝑗 ,      𝑠𝑗 = 𝑏𝑖𝑠𝑖𝑗 , 

𝑟0 = 𝑟𝑗𝑦
𝑗 ,         𝑠0 = 𝑠𝑗𝑦

𝑗 . 
 

By a direct computation, we can obtain a formula for mean Cartan torsion of an  𝛼, 𝛽 -metric as follows 

                                  𝐼𝑖 = −
Φ 𝜙−𝑠𝜙 ′ 

2Δ𝜙𝛼2
 𝛼𝑏𝑖 − 𝑠𝑦𝑖  .                                                                                      (2.1) 

 

Clearly, an  𝛼,𝛽 -metric 𝐹 = 𝛼𝜙 𝑠   where  𝑠 = 𝛽/𝛼 is Riemannian if and only if Φ = 0 . Hence, further we 

suppose that Φ ≠ 0. 

 

Theorem 2.1. [10] Let 𝐹 = 𝛼𝜙 𝑠 , 𝑠 = 𝛽/𝛼 be an  𝛼, 𝛽 -metric on an n-dimensional manifold 𝑀𝑛 𝑛 ≥ 3  

where 𝛼 =  𝑎𝑖𝑗 𝑦
𝑖𝑦𝑗  is a Riemannian metric and 𝛽 = 𝑏𝑖(𝑥)𝑦𝑖 is a 1-form on M. Suppose that F is not 

Riemannian and  𝜙 ′(𝑠) ≠ 0. Then F is locally dually flat on M if and only if 𝛼, 𝛽 and 𝜙 = 𝜙 𝑠  satisfy 
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1. 𝑠𝑙0 =
1

3
 𝛽𝜃𝑙 − 𝜃𝑏𝑙 ,  

2.  𝑟00 =
2

3
𝜃𝛽 +  𝜏 +

2

3
 𝑏2𝜏 − 𝜃𝑙𝑏

𝑙  𝛼2 +
1

3
 3𝑘2 − 2 − 3𝑘3𝑏

2 𝜏𝛽2 , 

3. 𝐺𝛼
𝑙 =

1

3
 2𝜃 +  3𝑘1 − 2 𝜏𝛽 𝑦𝑙 +

1

3
 𝜃𝑙𝜏𝑏𝑙 𝛼2 +

1

2
𝑘3𝜏𝛽

2𝑏𝑙 , 

𝜏 𝑠 𝑘2 − 𝑘3𝑠
2  𝜙𝜙 ′ − 𝑠𝜙2 − 𝑠𝜙𝜙 ′′ −  𝜙 ′2 + 𝜙𝜙 ′′ + 𝑘1𝜙 𝜙 − 𝑠𝜙 ′  = 0, 

 

where 𝜏 = 𝜏(𝑥) is a scalar function, 𝜃 = 𝜃𝑖(𝑥)𝑦𝑖  is a 1-form on M and  𝜃𝑙 = 𝑎𝑙𝑚𝜃𝑚  and 

𝑘1 = Π 0 ,  𝑘2 =
Π′ 0 

𝑄 0 
, 

𝑘3 =
1

6𝑄(0)2
 3𝑄′′ 0 Π′ 0 − 6Π(0)2 − 𝑄 0 Π′′′(0) , 

𝑄 =
𝜙 ′

𝜙−𝑠𝜙 ′
 , Π =

𝜙 ′2 +𝜙𝜙 ′′

𝜙(𝜙−𝑠𝜙 ′)
. 

 

In [5], Cheng-Shen study the class of  𝛼, 𝛽 -metrics of non-Randers type 𝜙 ≠ 𝑡1 1 + 𝑡2𝑠
2 +𝑡3𝑠  with  isotropic  

S-curvature  and  obtain  the  following. 

 

Theorem 2.2. [5] Let 𝐹 = 𝛼𝜙 𝑠 , 𝑠 = 𝛽/𝛼 be an non-Riemannian  𝛼, 𝛽 -metric on a manifold and  𝑏 =  𝛽𝑥 𝛼 . 

Suppose that 𝜙 ≠ 𝑡1 1 + 𝑡2𝑠
2 +𝑡3𝑠  for any constant 𝑡1 > 0, 𝑡2  𝑎𝑛𝑑 𝑡3. Then F is of isotropic S-curvature S = 

(n + 1)cF , if and only if one of the following holds 

𝑖) 𝛽 satisfies 

𝑟𝑖𝑗 = 𝜀{𝑏2𝑎𝑖𝑗 −𝑏𝑖𝑏𝑗 }, 𝑠𝑗 = 0,                                                                                           (2.2) 

where 𝜀 = 𝜀(𝑥) is a scalar function, and 𝑐 = 𝑐(𝑥) satisfies 

Φ = −2(𝑛 + 1)𝑘
𝜙Δ2

𝑏2−𝑠2,                                                                                                    (2.3) 

where k is a constant. In this case, S = (n + 1)cF with 𝑐 =  𝑘𝜀. 

𝑖𝑖)𝛽 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠  
𝑟𝑖𝑗 = 0,  𝑠𝑗 = 0.                                                                                                               (2.4) 

In this case, S = 0, regardless of choices of a particular 𝜙. 
 

III. Characterization of locally dually flat Matsumoto metric 
Theorem 3.3. Let 𝐹 = 𝛼2/𝛼 −  𝛽 be a Matsumoto metric on a manifold M of dimension 𝑛 ≥  3. Then the 
necessary and sufficiency conditions for F to be locally dually flat on M is as follows: 

i)𝑠𝑙0 =
1

3
 𝛽𝜃𝑙 − 𝜃𝑏𝑙 , 

ii)𝑟00 =
2

3
𝜃𝛽 +  𝜏 +

2

3
 𝑏2𝜏 − 𝜃𝑙𝑏

𝑙  𝛼2 +
26

3
𝜏𝛽2, 

iii)𝐺𝛼
𝑙 =

1

3
 2𝜃 + 7𝜏𝛽 𝑦𝑙 +

1

3
 𝜃𝑙 − 𝜏𝑏𝑙 𝛼2, 

where 𝜏 = 𝜏(𝑥) is a scalar function and 𝜃 = 𝜃𝑘𝑦
𝑘  is a 1-form on M. 

 

Proof:  For a Matsumoto metric  𝐹 = 𝛼2/𝛼 −  𝛽 ,we obtain the following as 
 

𝜙 =
1

1−𝑠
 ,                       𝜙 ′ =

1

 1−𝑠 2, 

𝑄 =
1

1−2𝑠
  ,                    𝑄′ =

2

 1−2𝑠 2, 

𝑄′′ =
8

 1−2𝑠 3,                𝑄′′′ =
48

 1−2𝑠 3, 

Π =
3

1−3𝑠+2𝑠2 ,              Π′   =
−3(4𝑠−3)

 1−3𝑠+2𝑠2 2, 

Π′′ =
−6(12𝑠2−18𝑠+7)

 1−3𝑠+2𝑠2 3  ,   Π′′′ =
18 8𝑠2−12𝑠+5 (4𝑠−3)

 1−3𝑠+2𝑠2 4 , 

𝑘1 = 3, 𝑘2 = 9 and 𝑘3 = 0. 
By using above values in Theorem 2.1, we get 

𝜏 𝑠 𝑘2 − 𝑘3𝑠
2  𝜙𝜙 ′ − 𝑠𝜙2 − 𝑠𝜙𝜙 ′′ −  𝜙 ′2 + 𝜙𝜙 ′′ + 𝑘1𝜙 𝜙 − 𝑠𝜙 ′  = 0 and 𝜏 = 0. 

Then finally by substituting 𝑘1, 𝑘2 and 𝑘3 values in Theorem 2.1, we get required proof.         

 

 

Now, let 𝜙 = 𝜙 𝑠  be a 𝐶∞ function on the  −𝑏0 ,𝑏0 . For a number 𝑏 ∈ [0, 𝑏0] let 

 

Φ = − 𝑄 − 𝑠𝑄′  𝑛Δ + 1 + 𝑠𝑄 −  𝑏2 − 𝑠2  1 + 𝑠𝑄 𝑄′′ ,                                               (3.1) 
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where Δ = 1 + sQ +  𝑏2 − 𝑠2 𝑄′ . 

It implies that                                    

Δ =
1+2𝑏2−3𝑠

 1−2𝑠 2 .                                                                                                                                     (3.2)                                                                                                                                                       

By Q, the the equation (3.1) can be written as follows: 

Φ = − 𝑄 − 𝑠𝑄′  𝑛 + 1 Δ +  𝑏2 − 𝑠2   𝑄 − 𝑠𝑄′ 𝑄′ −  1 + 𝑠𝑄 𝑄′′                             (3.3) 
 

By using the Theorem 2.2, now we will consider locally dually flat  𝛼,𝛽 -metric with isotropic  S-

curvature. 

 

Theorem 3.4. Let 𝐹 = 𝛼2/𝛼 −  𝛽 be a locally dually flat non-Randers type  𝛼,𝛽 -metric on a manifold M of 

dimension n ≥ 3. Suppose that F is of isotropic S-curvature S = (n+1)cF , where  c = c(x) is a scalar function 

on M. Then F is a locally projectively flat in adapted coordinate system and 𝐺𝑖 = 0. 
 

Proof: Let 𝐺𝑖 = 𝐺𝑖(𝑥,𝑦)  and  𝐺 𝛼
𝑖 = 𝐺 𝛼

𝑖 (𝑥,𝑦) denote the coefficients of F and  𝛼  respectively 

in the same coordinate system. 

By definition, we have 

                                                             𝐺𝑖 = 𝐺 𝛼
𝑖 + 𝑃𝑦𝑖 + 𝑄𝑖 ,                                                            (3.4)                                                                                                  

where 

                                                            𝑃 = 𝛼−1Θ − 2𝑄𝛼𝑠0 + 𝑟00 ,                                                    (3.5) 

                                                           𝑄𝑖 = 𝛼𝑄𝑠0
𝑖 + Ψ − 2𝑄𝛼𝑠0 + 𝑟00𝑏

𝑖 ,                                         (3.6) 

                                                            Θ =
𝜙𝜙 ′−𝑠 𝜙𝜙 ′′+𝜙 ′𝜙 ′ 

2𝜙  𝜙−𝑠𝜙 ′ + 𝑏2−𝑠2 𝜙 ′′ 
 

                                                            Ψ =
1

2

𝜙 ′′

 𝜙−𝑠𝜙 ′ + 𝑏2−𝑠2 𝜙 ′′
 

 

First, we suppose that the case (i) of the Theorem 2.2 holds. It is remarkable that, for a Matsumoto metric, 

Δ =
1 + 2𝑏2 − 3𝑠

 1 − 2𝑠 2
. 

It follows that  1 − 2𝑠 2 is a polynomial in s of degree 3. On the other hand we have 
 

                                                                𝜙Δ
2 =

𝜙 1+2𝑏2−3𝑠 
2

 1−2𝑠 4 .                                                          (3.7) 

Hence, if case(ii) of theorem (2.2) holds, then substituting (3.7) we obtained that 

                            𝑏2 − 𝑠2  1 − 2𝑠 4Φ = −2 𝑛 + 1 𝑘𝜙 1 + 2𝑏2 − 3𝑠 2.                                     (3.8) 
 

It follows that   𝑏2 − 𝑠2  1 − 2𝑠 4Φ  is not a polynomial in s (if  𝑘 =  0, then by considering the cartan torsion 
equation, we get a contradiction). 

Then, we put 

𝜙Δ
2 =

Δ 

 1−2𝑠 4, 

where 

Δ = 𝜙 1 + 2𝑏2 − 3𝑠 2 =
 1+2𝑏2−3𝑠 

1−2𝑠
. 

 

By assumption F is a non-Randers type metric. Thus Δ  is not a polynomial in s and then   𝑏2 − 𝑠2  1 − 2𝑠 4Φ  

is not a polynomial in s. Now, let us consider another formula for Φ: 

                   Φ = − 𝑄 − 𝑠𝑄′  𝑛 + 1 Δ +  𝑏2 − 𝑠2   𝑄 − 𝑠𝑄′ 𝑄′ −  1 + 𝑠𝑄 𝑄′′  ,                        (3.9)       

where  

                                            𝑄 − 𝑠𝑄′ =
1−4𝑠

 1−2𝑠 2.                                                                                (3.10) 

Then 

                                           Φ =
 𝑛+1  1−4𝑠  1+2𝑏2−3𝑠 + 𝑏2−𝑠2  1−7𝑠 

 1−2𝑠 4 .                                                 (3.11) 

 

From equations (3.8) and (3.11) the relation  𝑏2 − 𝑠2  1 − 2𝑠 4Φ  is a polynomial in s and b of degree 5 and 4 

respectively. The coefficient of 𝑠5is 7 which is not equal to zero (7 ≠ 0). Hence its impossible that Φ = 0. 

Therefore , we can conclude that equation (2.3) does not hold. So, the case (ii) of the Theorem 2.2 holds. 
In this case, we have 
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                                                           𝑟00 = 0,                                                                                   (3.12) 

                                                            𝑠𝑗 = 0.                                                                                    (3.13) 

 

In Theorem3.3(ii), taking 𝑟00 = 0 and we obtain 

                                                     𝜏 +
2

3
 𝑏2𝜏 − 𝜃𝑚𝑏𝑚  𝛼2 = 𝛽  −

2

3
𝜃 −

25

3
𝛽𝜏 .                             (3.14) 

 

Since 𝛼2 is irreducible polynomial of 𝑦𝑖, the equation (3.14) reduces to the following 

                                  𝜏 +
2

3
 𝑏2𝜏 − 𝑏𝑚𝜃𝑚   ,                                                                        (3.15) 

 

                                                                      
2

3
𝜃 +

25

3
𝛽𝜏 = 0.                                                            (3.16)    

 Then Theorem 3.3(i) becomes                                                 

                                                          𝑠𝑖0 = −
1

3
 𝜃𝑏2 − 𝛽𝑏𝑚𝜃𝑚  .                                                       (3.17)      

This implies that 

 

                                                                𝜃𝑏2 − 𝛽𝑏𝑚 = 0.                                                                 (3.18) 
By equations (3.14), (3.15) and (3.16), we obtain 

                  −
2

3
 1 + 2𝑏2 = 𝜏 +

2

3
 𝑏2 − 𝑏𝑚𝜃𝑚  𝛽 +

25

3
 1 + 2𝑏2 𝜏𝛽.                                              (3.19) 

It implies that 

                                                                𝜃 = −
25

3
𝜏𝛽.                                                                        (3.20) 

From equations (3.15) and (3.20), it follows that 𝜏 = 0 and substituting 𝜏 = 0 in equation (3.20) we get 𝜃 = 0. 

Thus finally Theorem 2.1 (i),(ii) and (iii) reduce to the following 

                                                                  𝑠𝑖𝑗 = 0,                                                                              (3.21) 

                                                                  𝐺𝛼
𝑙 = 0,                                                                              (3.22) 

                                                                  𝑟00 = 0.                                                                              (3.23) 

Since 𝑠0 = 𝑟00 = 0, then equations (3.5) and (3.6) reduces to 

                                                             𝑃 = 0 and 𝑄𝑖 = 0.                                                                  (3.24) 
Then the relation (3.4) becomes  

                                                                  𝐺𝛼
𝑖 = 0.                                                                              (3.25) 

This completes the proof. 

 

Theorem 3.5. Let 𝐹 = 𝛼2/𝛼 −  𝛽 be a Matsumoto metric and non-Riemannian metric on n-dimensional (n ≥ 3) 

manifold M. Then F is locally dually flat with isotropic S-curvature. 𝑆 =  (𝑛 +  1)𝑐𝐹 if and only if it is locally 

Minkowskian. 

 

Proof : We concluded by the theorem 3.4 that 𝐹 = 𝛼2/𝛼 −  𝛽 is dually flat and projectively flat in any adapted 
coordinate system. By lemma 2.1 , we have 

 

𝐹𝑥𝑘 = 𝐶𝐹𝐹𝑦𝑘 . 

Hence the spray coefficients 𝐺𝑖 = 𝑃𝑦𝑖are given by 

𝑃 =
1

2
𝐶𝐹. 

Since 𝐺𝑖 = 0, then P = 0 and so that C = 0. 

It implies that 𝐹𝑥𝑘 = 0 and then F is a locally Minkowskian metric in the adapted coordinated system. This 

completes the proof. 
 

 

IV. Conclusion 

 

The authors S.I.Amari and H.Nagaoka[1] introduced the notion of dually flat Riemannian metrics when 

they study the information geometry on Riemannian manifolds. Information geometry has emerged from 

investigating the geometrical structure of a family of probability distributions and has been applied successfully 

to various areas including statistical inference, control system theorem and multi-terminal information theorem. 

As we know, Finsler geometry is just Riemannian geometry without the quadratic restriction. 

Therefore, it is natural to extending the construction of locally dually flat metrics for Finsler geometry.  
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In Finsler geometry, Z.Shen [8] extends the notion of locally dually flatness for Finsler metrics. Dually 

flat Finsler metric form a special and valuable class of Finsler metric in Finsler information geometry, which 

play a very important role in studying many applications in Finsler information structure. 
In this article, we study and characterized the locally dually flat Matsumoto metric with isotropic S-

curvature which is not Riemannian. 
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