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I. Introduction 

A positive sequence ( )nb  is called an almost increasing sequence if there exist a positive increasing 

sequence ( )nc  and two positive constants A  and B  such that (Bari [2]) 

 n n nAc b Bc   (1.1) 

A sequence ( )n  is said to be of bounded variation denoted by ( )n BV   if  
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A positive sequence ( )nx x  is said to be a quasi- -power increasing seqeuence if there exist a constant 

( , ) 1K K X   such that n nKn X m X   holds for all 1n m   (Leindler [5]). 

Let ( )n  be a sequence of complex numbers and let na  be a given infinite series with partial sums ( )ns

. We denote by nz  and nt


 the nth cesaro means of order   with 1    of the sequence ( )ns  and 

( )nna  respectively, that is  
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The series na  is said to be summable | , | , 1kC k    and 1    if (Balci [1]) 
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  then | , |kC  -summability is the same as | , |kC  -summability (Flett [4]). 

 

II. Known theorem 
Sulaiman [6] has proved the following theorem. 

Theorem 2.1 Let ( )n  be a sequence of positive real numbers. Let ( )nX  be a quasi- f -increasing sequence 

( ), (log )n nf f f n n   , 0 1  , 0  . Let ( )n  and ( )n  be sequences of numbers such that 

( )n  is positive non-decreasing sequences. 

If 
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and 
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are satisfied then the series n n na    is summable ( ,1) , 1kC k   . 

 

III. Main theorem 
In this paper we have proved the following theorem. 

Theorem 3.1  Let ( )n
 
be a sequence of complex numbers. Let ( )nX  be a quasi- f -power increasing 

sequence, ( ), (log ) ,0 1, 0n nf f f n n        . Let ( )m  and ( )n be sequences of the numbers 

such that ( )n  is positive non-decreasing sequence if (2.1), (2.2), (2.3) (2.4), (2.6) (2.7) and  
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n

a 


  is summable | , | , 1kC k   . 

 

IV. Lemmas 
 We have need the following lemmas for the the proof of our theorem. 

Lemma 4.1  (Sulaiman [6]) Let ( )nX  be a positive non decreasing sequence and, let ( )n  be a sequence of 

numbers if 
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Lemma 4.2 (Sulaiman [6]) Let ( )nX  be a quasi- f -power increasing  sequence 
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V. Proof of the theorem 

Let ( )nT
 be the nth ( , )C   with 0 1  , mean of the sequ ence n n

n

na 



 
 
 

, then  

 
1

1

1 n
v v

n n v

vvn

va
T A

A

 












   

Applying Abel’s transformation and using lemma (4.1), we get that  
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To complete the proof of the theorem by minkowskiys inequality, it is sufficient to show that 
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Now, when 1k   applying Hölder’s inequality with indices k  and k  , where 
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This completes the proof of theorem. 
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