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Abstract: The purpose of this paper is to develop the space fractional order explicit finite difference scheme for 

fractional order soil moisture diffusion equation with the initial and boundary conditions. We prove that the 

solution of the space fractional order finite difference scheme is conditionally stable and the convergence of the 

scheme is discussed at the length. Also as an application of this scheme, numerical solution for space fractional 

soil moisture diffusion equation is obtained and it is represented graphically by the software ‘Mathematica’. 
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I. Introduction 
Recently we found new applications of fractional calculus in science, engineering, finance and 

hydrology [2, 3, 7, 9, 10]. A physical or mathematical approach to analomous diffusion is based on generalized 

diffusion equation containing fractional order derivatives in time or space or space-time. Now a day, fractional 

diffusion equations have been studied by many mathematicians and researchers [1, 4, 11, 12]. In this study we 

develop the space fractional order explicit finite difference scheme for fractional order soil moisture diffusion 

equation. 

            Most physical phenomenon be involved using partial differential equation. The hydrodynamics of the 

water into soil is a very complex phenomenon and infiltration is continuous to occupy the attention of soil 

physicists and engineers. A theoretical and experimental analysis is made to understand this phenomenon by 
many soil Scientists from the beginning and birth of soil Physics [5, 6, 8]. Furthermore, in numbers of 

laboratory and field experiments where the results were only qualitatively interpreted and in the real application 

of physical theories to the solution of transport processes in soil, to tillage and compaction of soil etc.s 

      First experimental study on the movement of water in the soil was done by H. Darcy (1856). Edgar 

Buckingham (1907) described the water flow in unsaturated porous media modifying the equation of Darcy. 

Richard’s (1931) combined the equation and Buckingham with the equation of continuity to establish an over all 

relationship.   

Consider the general diffusion equation of unsaturated flow of soil moisture as follows, 

                                         

                           

 

where,  

           ( x, y, z, t )= the volumetric soil moisture content, 

                            D= the diffusivity of soil moisture, 

                            D= D( ) is a function of moisture content and 

                            K = the capillary or hydraulic conductivity of soil moisture. 

If the flow is considered in x direction and assume that D is constant then equation (1.1) becomes 

                                                                                                                                              (1.2) 

Which is the diffusion heat flow equation, studied by Richard’s for water flow instead of heat flow. Then the 

model problem is 

                                                                                                                         (1.3) 
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We solve the particular problem of moisture flow in to a horizontal tube, we impose proper initial and boundary 

conditions.For that with an initial uniform moisture percentage of  

(  is constant) and for which at time t = 0, become initial condition and which is mathematically 

expressed as follows 

                                                                                                         (1.4) 

For left boundary condition, there is applied a source of water placed at x=0 so as to maintain at all times after 

t=0 is , and which is mathematically expressed as , 

                                                                                                         (1.5) 

For right boundary condition, there is applied a source of water placed at semi-infinite plane so as to maintain at 

all times after t=0 is , and which is mathematically expressed as , 

                                                                                                      (1.6) 

There fore, we have the model IBVP for soil moisture flow which is given as follows 

                                                                                                         (1.7) 

Subject to the initial and boundary conditions 

                                                                                                          (1.8) 

                           ,                             (1.9)  

Where is volumetric water content and D is the diffusivity constant of soil moisture. 

In the next section we develop the explicit finite difference scheme (SFEFDS) for space fractional soil moisture 
diffusion equation. 

The plan of the paper is as follows: In section 2, the fractional order explicit finite difference scheme is 

developed for space fractional soil moisture diffusion equation. The section 3 is devoted for stability of the 

scheme and the question of convergence is proved in section 4. The numerical solution of space fractional soil 

moisture diffusion equation is obtained using Mathematica software in the section 5. 

 

II. Finite Difference Scheme: 
             Consider the space fractional soil moisture diffusion equation (SFSMDE) with initial and boundary 

conditions as follows. 

 
                             Initial condition: ,                                                                           (2.2) 

                  boundary conditions: , :                             (2.3) 

 

where the diffusion coefficient D > 0, and  is Capiuto’s fractional derivative,it is 

defined as [10] 

 

Where is the gamma function. 

Consider  is positive integer, using second order difference approximation, we get 
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Put  

               

 

              

 

Let  be the grid step in time,  be the grid step in 

space 

 

We approximate the soil moisture space fractional diffusion equation (SMSFDE) (2.1) by using an explicit 

finite difference scheme (EFDS), we get 

 

After simplification we get 

     

 

    where . 

    The initial condition is approximated as 

                                                             
 

The left boundary condition is approximated as 

                                                                   
 

Now using central difference formula the right boundary condition is approximated as follows. 

                                                                 

 

Therefore the fractional approximated initial boundary value problem (IBVP) is 
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where . 

Therefore the IBVP (2.7) – (2.9) can be written in the following matrix equation. 

where ,                                     . 

and  is a square matrix of coefficients of order N, where 

       

 

while, 

            

 

The above system of algebraic equations is solved by using Mathematica software in section 5. 

 

III. Stability: 
         This section is devoted for the stability criteria of the space fractional explicit finite difference scheme 

(2.7) - (2.9) for the SFDE (2.1) - (2.3). 

Theorem 3.1: The solution of the space fractional explicit finite difference scheme (SFEFDS) (2.7) - (2.9) 

for the SFDE (2.1) - (2.3) is conditionally stable. 

Proof: Consider  the equation (2.10), we have, 

                                                                      
 

By Gerschgorin’s first theorem [6], let  be an eigenvalue of the matrix A to linear system of equation 

(2.10), and x be the corresponding eigenvector then Choose i such that 

, then , and therefore 
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We substitute the value of in equation (3.1), we get 

      (i) when i = 1 
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Therefore from (i) - (v) we have proved that if 

                                      

 

then the spectral radius of the matrix satisfies  . 

If                                          

then there exists a positive number such that 

                                            

 

Therefore, this proves that the finite difference scheme is conditionally stable. 

 

IV. Convergence: 
              In this section we discuss the question of convergence. Consider another vector 

                                     
 

Satisfying the finite difference scheme (10), becomes 

 

where is the vector of the truncation errors at time level  
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satisfying the finite difference scheme (2.10), we get 

 

where is the vector of the truncation errors at level 
 

                                                  
 

and                                    

Now, we substract (2.10) - (4.2) , we get 

  

Clearly, satisfies (1.7), we have 
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Therefore, from equation (4.8), we get 
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Hence proof. 

 

V. Numerical Solution: 
             In this section, we obtain the approximated solution of space fractional soil moisture diffusion equation 

with initial and boundary conditions. To obtain the numerical solution of the space fractional soil moisture 

diffusion equation (SFSMDE) by the finite difference scheme, it is important to use some analytical model. 
Therefore, we present an example to demonstrate that SFSMDE can be applied to simulate behavior of a 
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fractional diffusion equation by using Mathematica Software. We consider the following, dimensionless one-

dimensional space fractional soil moisture diffusion equation with suitable initial and boundary boundary 

conditions 

 

with the diffusion coefficient D = 1. 

The numerical solution obtained at t = 0.05 by considering the parameters τ = 0.005, h = 0.1, 

α = 1.7, 1.8 and 1.9, which is simulated in the following figure. 

 

                                                 
                                Fig.5.1 : The soil moisture diffusion profile with t = 0.05, 

                                              h = 0.1, α = 1.7(blue) α = 1.8(red) and α = 1.9(green) 

 

VI. Conclusions. 
( i ) We develop the new space fractional order explicit finite difference scheme for soil moisture space 

fractional diffusion equation in a bounded domain. 

(ii) The numerical example is presented to show that the numerical results are in good agreementwith our 
theoretical analysis. 

(iii) The fractional order explicit finite difference scheme is numerically stable. 
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