The conditional neighborhood for graph and its algorithm.

Mabrok EL- Ghoul¹, HabibaEl-Zohny², Hend El- Morsy³

¹Mathematics Department Faculty of science Tanta University ^{2,3}Mathematics Department Faculty of science Alazhar University

Abstract: In this paper we will define the conditional neighborhood for graph and classified the conditions into many types. In each type we will compute the algorithm for graph . We will prove that the neighborhood will be give different neighborhood by different algorithm. *Keywords:* Neighborhood, Graph, Algorithm. *AMS Subject Classification:*05C85, 68R10

I. Definitions:

DefinitionofGraph: An (undirected) graph G is defined by two finite sets.a non-void set Xof elements called vertices, a set E (which can be empty) of elements callededges, with for each edge e two associated vertices, and y, distinct or not, called the endvertices

of e [3].

Definition of weighted graph: Is a graph for which each edge has an associated real number weight[4]. **Definition of degree:** The degree of a vertex x in a graph G is the number of edges in G incident to x, that is edges with x as an endvertex, loops being counted twice. This integer is denoted by d(x) or $d_G(x)$ [3]. **Definitionof Algorithm:** In mathematics and computer science, an algorithm is an effective method expressed as a finite list of well-defined instructions for calculating a function. In simple words an algorithm is a step-by-step procedure for calculations[5].

DefinitionofShortest path algorithm: An algorithm that is designed essentially to find a path of minimum length between two specified vertices of connected weighted graph [3].

Definition of curvature: In general, there are two important types of curvature: extrinsic curvature and intrinsic curvature. The extrinsic curvature of curves in two- and three-space was the first type of curvature to be studied historically, culminating in the Frenet formulas, which describe a space curve entirely in terms of its "curvature," torsion, and the initial starting point and direction [1].

Definition of Torsion: The torsion of a space curve, sometimes also called the "second curvature" is the rate of change of the curve's osculating plane. The torsion τ is positive for a right-handed curve, and negative for a left-

handed curve. A curve with curvature $\mathbf{K} \neq \mathbf{0}$ is planar iff $\tau = \mathbf{0}$. The torsion can be defined by $\tau \equiv -\mathbf{N} \cdot \mathbf{B}'$, where \mathbf{N} is the unit normal vector and \mathbf{B} is the unit binormal vector[2].

Kruskal's algorithm:

Input : *G* (a weighted graph with *n* vertices.)

Algorithm body:

(Build a subgraph T of G to consist of all the vertices of G with edges added in order of increasing weight. At each stage, let m is the number of edges of T). Initialized T to have all vertices of G and no edges.

1. Let *E* be the set of all edges of *G* , and let m := 1.

- [pre-condition: G is connected.]
- 3. While (*m*≤*n*−1)

3a. Find an edge e in E of least weight.

3b. Delete e from E.

3c. If addition of *e* to edge set of *T* doesn't produce a circuit

Then add *e* to the edge set of *T* and set m := m + 1

End while

[post-condition : T is minimum spanning tree for G.] **Output:** T[4].

II. Main Results:

Definition:

Conditional neighborhood: Is a neighborhood in which we put a condition to find all its vertices. **Types of conditions to find neighborhood:**

The conditions can be classified into three types:

- 1. Condition describes the algorithm.
- 2. Condition describes the geometric classification of graph.
- 3. Condition describes the algorithm and the geometric classification together.

Type (1): Condition describes the algorithm:

In this type we can change the condition on algorithm such as:

- 1. Shortest path algorithm's condition.
- 2. Longest path algorithm's condition.

And so on,

We will illustrate some examples in each case.

Example 1 :

Consider a graph shown in Fig.(1), if the condition is : The neighborhood for any vertex is all vertices belongs to shortest path from v_0 to v_6 we have:

N(V)

But if the condition is all vertices belongs to longest path from V_0 to V_6 we have:

V	
\mathbf{V}_0	$\{V_1, V_2, V_3, V_4, V_5, V_6\}$
V_1	$\{V_2, V_3, V_4, V_5, V_6\}$
V_2	$\{V_3, V_4, V_5, V_6\}$
V_3	$\{V_4, V_5, V_6\}$
V_4	$\{V_5, V_6\}$
V_5	$\{V_6\}$
V_6	$\{V_6\}$

For the previous graph, if we find minimum spanning tree by using Kruskal's algorithm we have:

Iteration no.	Edge considered	weight	Action taken
1	$V_0 _ V_1$	5	added
2	$V_1 V_2$	10	added
3	$V_2 V_3$	40	added
4	$V_3 V_4$	30	added
5	$V_4 V_5$	30	added
6	$V_2 V_4$	20	not added
7	V ₅ V ₆	15	added

And minimum spanning tree will be:

Then the neighborhood for condition (1) become:

V	N(V)
V_0	$\{V_1, V_2, V_4, V_5, V_6\}$
\mathbf{V}_1	$\{V_2, V_4, V_5, V_6\}$
V_2	$\{V_4, V_5, V_6\}$
V_3	$\{V_4, V_5, V_6\}$
V_4	$\{V_5, V_6\}$
V_5	$\{V_6\}$
V_6	$\{V_6\}$

And for condition (2) will be:

V	N(V)
\mathbf{V}_0	$\{V_1, V_2, V_4, V_5, V_6\}$
\mathbf{V}_1	$\{V_2, V_4, V_5, V_6\}$
V_2	$\{V_4, V_5, V_6\}$
V_3	$\{V_4, V_5, V_6\}$
V_4	$\{V_5, V_6\}$
V_5	$\{V_6\}$
V_6	$\{V_6\}$

Note: From the previous example we find that neighborhood of $V_6 \le$ neighborhood of $V_5 \le n.~V_4 \le n.~V_3 \le n.~V_2 \le n.~V_1$.

Example 2 :

Consider a graph shown in Fig.(3), if the condition is (The neighborhood for any vertex is all vertices belongs to shortest path From a to g) we have:

But if the condition is: all vertices belongs to longest path from a tog we have:

V	N(V)
a b c d e f	{ b,c,d,e,f,g } {c,d,e,f,g} { d, e,f,g} { d, e,f,g} { a, b, c, g} { a,b,c,d,g} { a,b,c,d,e,g }
g	{g}

If we find minimum spanning tree for graph Fig.(4) (By Kruskal's algorithm) and compute the previous computations we obtain

The conditional neighborhood for graph and its algorithm.

V	N(V)	
a	{ b,c,d,e,f,g }	
b	$\{c,d,e,f,g\}$	
c	$\{ d, e, f, g \}$	
d	$\{e,f,g\}$	
e	{f, g}	
f	{g}	
g	$\{g\}$	

eighborhood for condition 1: And for condition 2:

	N(V)	
{ b,c,d,e,f,g }		
$\{ d, e, f, g \}$		
{g}		
	{c,d,e,f,g} {d,e,f,g} {e,f,g} {f,g} {g}	{ b,c,d,e,f,g } {c,d,e,f,g} { d, e,f,g} { d, e,f,g} { e,f,g} { f,g}

With this observation, we state the following theorem:

Theorem 1:

Ν

For conditional neighborhood which describe the algorithm for graph such as , shortest and longest path , if we compute the neighborhood for each vertex after finding minimum spanning tree for graph we find that:

Neighborhood computed for shortest path condition equal to neighborhood computed for longest path condition.

Proof:

Suppose G is connected weighted graph with vertices from V_0 to V_n , if G has at least one circuit, then shortest path from V_0 to V_n must contain at least two edges of that circuit with least weights, and longest path from V_0 to V_n must contain at least two edges of that circuit with long weights which varies from shortest path and the neighborhood for each vertex must change.

But if G is circuit_free, then G is its own spanning tree we have, then the shortest and longest path from V_0 to V_n are the same which imply that the neighborhood of each vertex is the same.

Type (2): The condition which describes the geometric classification of graph:

In this type we can put conditions on a graph such as,

- 1. Condition depends on degree of vertices.
- 2. Condition depends on curvature of graph.
- 3. Condition depends on torsion of graph. And so on.
- We will illustrate some examples in this type and compute the algorithm for each example.

1. For the condition depends on the degree of vertex:

Example 3:

Consider a graph as shown in Fig.(5), if the condition is (The neighborhood of the vertex is all vertices with degree 3 we have:

If we find minimum spanning tree for graph (By Kruskal's algorithm) Fig.(6), the neighborhood for each example will be changed as follows:

Example 4:

Consider a graph shown in Fig.(7), if the neighborhood for each vertex are all vertices with degree 1 we obtain:

But if we applying the algorithm to find minimum spanning tree the neighborhood will be changed:

Lemma 1:

For conditional neighborhood which describe the geometric classification of graphsuch as the degree of vertex , the neighborhood of every vertex changed before and after applying the algorithm.

2. For the condition depend on curvature of graph:

Note: We suppose that the positive curvature is in the form

And the negative curvature is in the form -

Example 5:

For graph shown in Fig.(9), if the neighborhood for each vertex is all vertices with positive curvature we have:

The conditional neighborhood for graph and its algorithm.

But if the condition is all vertices with negative curvature then:

V	N(V)	
V_0	Ø	
V_1	Ø	
V_2	Ø	
V_3	$\{ \mathbf{V}_4 \}$	
V_4	$\{ V_3, V_5 \}$	
V_5	$\{V_4\}$	
V_6	$\{V_4\}$	
V ₇	Ø	

Example 6:

For graph shown in Fig.(10), compute the neighborhood for each vertex if the condition is all vertices with negative curvature.

3. For the condition depend on the torsion of graph:

Example 7:

Consider a graph as shown in Fig.(11), if its vertices V_1 , V_2 , V_3 are in R^1 while vertices V_4 , V_5 are in R^2 , we can condition that the neighborhood of each vertex is the vertices in R^1 only, then we obtain:

Example 8:

For graph shown in Fig.(12), for which vertices A, B, C, D are in R^1 while the other vertices are in R^2 If we condition that the neighborhood of each vertex is the vertices in R^2 only, then we obtain:

Type (3) : Condition describes the algorithm and the geometric classification together:

In this type we will discuss conditions on a graph such as :

- 1. Condition describe the degree and shortest path together.
- 2. Condition describe the degree and longest path together.

Example 9:

Consider a graph as shown in Fig.(7), we can compute the neighborhood for each vertex if we condition that its all vertices with degree 2 and belong to the shortest path from V_1 to V_7 we have:

V	N(V)
V ₁	Ø
V_2	Ø
V_3	$\{V_4, V_1\}$ $\{V_3, V_6\}$
V_4	$\{V_3, V_6\}$
V ₅	Ø
V_6	$\{V_4, V_7\}$
V ₇	Ø

But if the condition is its all vertices with degree 2 and belong to the longest path from V_1 to V_7 we have:

V	N(V)
V_1	Ø
V_2	$\{V_1, V_3\}$
V3	$\{V_1, V_3\}$ $\{V_4, V_2\}$
V_4	$\{V_3, V_6\}$ $\{V_4, V_6\}$
V_5	$\{V_4, V_6\}$
V_6	$\{V_5, V_7\}$
V_7	Ø

But if we apply the algorithm to find minimum spanning tree the neighborhood will be changed: For the first table:

V	N(V)	
V1	Ø	
V_2	$\{V_1, V_3\}$	
V_3	$\{V_2, V_4\}$ $\{V_3, V_5\}$	
V_4	$\{V_3, V_5\}$	
V ₅	$\{V_4, V_6\}$	
V_6	$\{V_5, V_7\}$	
V_7	Ø	

And for the second table:

V	N(V)
V_1	Ø
V_2	$\{V_1, V_3\}$
V_3	$\{V_2, V_4\}$
V_4	$\{V_3, V_5\}$
V_5	$\{V_4, V_6\}$
V_6	
V_7	Ø

this implies the same results as in theorem 1.

References:

- Casey J.. Exploring Curvature, Wiesbaden, Germany, 1996.
- [1] [2] Gray, A. "Drawing Space Curves with Assigned Curvature." in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 222-224, 1997.
- [3] Fournier, Jean-Claude, Graph Theory and applications with Exercises and problems, ISTE Ltd, 2009.
- [4] [5] Susanna S.Epp, Discrete Mathematics With Application, Third Edition, Thomson Learning, Inc, 2004.
- http://en.wikipedia.org/wiki/Algorithm .