Contra R*- Continuous And Almost Contra R*- Continuous Functions

Renu Thomas* and C.Janaki**

*Department of Mathematics, Sree Narayana Guru College, Coimbatore (TN) INDIA. * Department of Mathematics, L.R.G. Govt.Arts college for Women, Tirupur (TN) INDIA

Abstract: In this paper we present and study a new class of functions as a new generalization of contra continuity. Furthermore we obtain some of their basic properties and relationship with R*-regular graphs. **Keywords:** Contra R*-continuous function, almost contra R*-continuous functions, R*-regular graphs, R*-locally indiscrete. AMS subject classification: 54C08, 54C10

I. Introduction

In 1996,Dontchev [5] introduced the notion of contra continuity. Several new generalizations to this class were added by Dontchev and Noiri [6] as contra-continuous functions and S-closed spaces, contra semi continuous,contra δ -precontinuous functions etc. C.W.Baker [2] introduced and investigated the notion of contra β continuity, Jafari and Noiri [11] studied the contra precontinuous and contra α continuous functions.

Almost contra pre continuous function was introduced by Ekici [7]. In this direction we will introduce the concept of almost contra R^* -continuous functions. We include the properties of contra R^* -continuous functions and the R^* -regular graphs.

Throughout this paper, the spaces X and Y always mean the topological spaces (X, τ) and (Y, σ) respectively. For A \subset X, the closure and the interior of A in X are denoted by cl(A) and int(A) respectively. Also the collection of all R*-open subsets of X containing a fixed point x is denoted by R*-O(X,x).

II. Preliminaries

Definition: 2.1. A subset A of a topological space (X, τ) is called (1) a regular open [17] if A = int(cl(A)) and regular closed [17] if A = cl(int(A)).

The intersection of all regular closed subset of (X, τ) containing A is called the regular closure of A and is denoted by rcl(A).

Definition :2.2. [4] A subset A of a space (X, τ) is called regular semi open set if there is a regular open set U such that $U \subset A \subset cl(U)$. The family of all regular semi open sets of X is denoted by RSO(X).

Lemma:2.3. [5] In a space (X, τ) , the regular closed sets, regular open sets and clopen sets are regular semiopen.

Definition:2.4. A subset of a topological space (X, τ) is called

- 1. a regular generalized (briefly rg-closed) [17] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- 2. a generalized pre regular closed (briefly gpr-closed) [10] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- 3. a regular weakly generalized closed (briefly rwg-closed) [15] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- 4. a generalized regular closed (briefly gr-closed) [14] if rcl (A) \subseteq U whenever A \subseteq U and U is open in X.
- 5. a regular generalized weak closed set (briefly rgw-closed) [19] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular semi open in X.

The complements of the above mentioned closed sets are their respectively open sets.

Definition:2.5 [12] A subset A of a space (X, τ) is called R*-closed if rcl(A) $\subset U$ whenever A $\subset U$ and U is regular semiopen in (X, τ) . We denote the set of all R*- closed sets in (X, τ) by R*C(X).

Definition:2.6 [12]A function $f: X \to Y$ is called R*-continuous if $f^{-1}(V)$ is R*-closed in X for every closed set V of Y.

Definition:2.7[5] A function $f: X \to Y$ is called contra continuous if $f^{-1}(V)$ is closed in X for every open set V of Y.

Definition:2.8 A function $f: X \to Y$ is called

- 1. contra rg- continuous, if $f^{-1}(V)$ is rg- closed in X for each open set V of Y.
- 2. contra gpr- continuous, if $f^{-1}(V)$ is gpr- closed in X for each open set V of Y.
- 3. contra rwg-continuous, if $f^{-1}(V)$ is rwg- closed in X for each open set V of Y.
- 4. contra gr- continuous, if $f^{-1}(V)$ is gr- closed in X for each open set V of Y.
- 5. contra rgw-continuous, if $f^{-1}(V)$ is grw- closed in X for each open set V of Y.
- 6. an R-map [8] if $f^{-1}(V)$ is regular closed in X for each regular closed set V of Y.
- 7. perfectly continuous if [1,7] $f^{-1}(V)$ is clopen in X for each open set V in Y.
- 8. almost continuous if [20] $f^{-1}(V)$ is open in X for each regular open set V in Y
- 9. regular set connected if [9] $f^{-1}(V)$ is clopen in X for each regular open set V in Y.

10. RC-continuous [8] if $f^{-1}(V)$ is regular closed in X for each open set V in Y.

Definition:2.9 [21] A space is said to be weakly Hausdroff if each element of X is an intersection of regular closed sets .

Definition:2.10 [22] A space is said to be Ultra Hausdroff if for every pair of distinct points x and y in X, there exist disjoint clopen sets U and V containing x and y respectively.

Definition:2.11[22] A topological space X is called a Ultra normal space, if each pair of disjoint closed sets can
be separated by disjoint clopen sets.Definition:2.12[23] A topological space X is said to be hyperconnected if every open set is dense.

III. Contra R*-continuous functions

Definition: 3.1 A space X is called locally R*-indiscrete if every R*-open subset of X is closed.

Definition:3.2 A function $f: X \to Y$ is called contra R*-continuous if $f^{-1}(V)$ is R*-closed in X for every open set V of Y.

Definition :3.3 A function $f : X \to Y$ is strongly R*-open if the image of every R*-open set of X is R*-open in Y.

Definition :3.4 A function $f: X \to Y$ is almost R*-continuous if $f^{-1}(V)$ is R*-open in X for each regular open set V of Y.

Theorem:3.5 Every contra R*-continuous function is contra rg-continuous, contra gpr-continuous, contra rwg-continuous, contra rgw-continuous but not conversely.

Proof :Obvious from definitions. **Example**

Example 3.6: Let
$$X = \{a, b, c, d\} = Y, \tau = \{X, \phi, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}\} \sigma = \{Y, \phi, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$$

Define a mapping $f: X \to Y$ as the identity mapping. Here the function f is contrarg-continuous, contra gpr-

continuous and contra rwg- continuous but not contra R*-continuous since $f^{-1}\{a\} = aandf^{-1}\{c\} = c$ are not R*-closed.

Example

$$X = \{a, b, c, d\} = Y, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}, \sigma = \{Y, \phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}.$$

Define a mapping $f: X \to Y$ as f(a) = c, f(b) = a, f(c) = d, f(d) = b, the function f is contra grcontinuous but not contra R*-continuous.

Example3.8:

$$X = \{a, b, c, d\} = Y, \tau = \{X, \phi, \{a\}, \{d\}, \{a, d\}, \{a, b\}, \{a, b, d\}\}, \sigma = \{Y, \phi, \{c, d\}, \{a, c, d\}\}.$$

Define a mapping $f: X \to Y$ as f(a) = b, f(b) = a, f(c) = d, f(d) = c, the function f is contra rgw-continuous but not contra R*-continuous.

Remark:3.9

Contra continuous and contra R*-continuous are independent concepts.

3.7:Let

Example:3.10

Let X=Y={a,b,c} $\tau = \{X, \phi, \{a\}, \{b, c\}\}$ $\sigma = \{Y, \phi, \{b\}, \{c\}, \{b, c\}\}$ R*-C(X) ={set of all subsets of X}. Define f: $X \rightarrow Y$ as the identity mapping .Here f is contra R*-continuous but not contra continuous since $f^{-1}{b} = {b}$ is not closed in X.

Example 3.11: Let X=Y={a,b,c,d} $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\} \ \sigma = \{Y, \phi, \{d\}\}$

 $R^{*} - C(X) = \{X, \phi, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}.$ Define f: X \rightarrow Y as the

identity mapping. $f^{-1}{d} = {d}$ is not R*-closed and hence is not contra R*-continuous but contra continuous. **Theorem3.12:** Every RC continuous function is contra R*-continuous but not conversely.

Proof : Straight forward.

Example 3.13: Let
$$X = Y = \{a, b, c\} \tau = \{\{X\}, \{\phi\}, \{a\}, \{b\}, \{a, b\}\}, \sigma = \{Y, \phi, \{a\}, \{a, b\}, \{a, c\}\}$$

Define $f: X \to Y$ as $f(a) = b, f(b) = c, f(c) = a$

Here f is contra R*-continuous but not RC-continuous.

Remark 3.14:

The composition of two contra R*-continuous functions need not be contra R*-continuous as seen in the following example.

Example3.15: let X=Y=Z = {a,b,c} $\tau = \{X, \phi, \{a\}, \{c\}, \{a,c\}\} \sigma = \{Y, \phi, \{a,b\}\}$

 $n = \{Z, \phi, \{b\}, \{a, c\}\}$ R*- C(X)={X, $\phi, \{b\}, \{a, b\}, \{b, c\}, \{c, a\}\}$

 $R^{*}-C(Y) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{c,a\}\}$

Define f: $X \rightarrow Y$ by f(a) = b, f(b) = c, f(c) = a, g: $Y \rightarrow Z$ by g(a) = b, g(b) = c, and g(c) = a, Then f and g are contra R*-continuous but $g \circ f$: $X \rightarrow Z$ is not contra R*-continuous since $(g \circ f)^{-1}{b} = f^{-1}(g^{-1}{b}) = f^{-1}(a) = {c}$ is not R*-closed.

Theorem3.16: If $f:(X,\tau) \to (Y,\sigma)$ is a contra R*-continuous function and g: $(Y,\sigma) \to (Z,\eta)$ is a continuous function, then the function $g \circ f: X \rightarrow Z$ is contra R*-continuous.

Proof: Let V be open in Z. Since g is continuous, $g^{-1}(V)$ is open in Y.f is contra R*-continuous, so $f^{-1}(g^{-1}(V))$ is R*-closed in X. Hence $(g \circ f)^{-1}(V)$ is R*-closed in X. i.e. $g \circ f$ is contra R*-continuous.

Theorem 3.17: If f: $(X,\tau) \to (Y,\sigma)$ is a contra R*-continuous map and g: $(Y,\sigma) \to (Z,\eta)$ is regular set connected function, then $g \circ f: X \rightarrow Z$ is R*-continuous and almost R*-continuous.

Proof: Let V be regular open in Z.Since g is regular set connected, g⁻¹(V) is clopen in Y. Since f is a contra R*-continuous $f^{-1}(g^{-1}(V))$ is R*-closed in X Hence $g \circ f$ is almost R*-continuous.

Theorem 3.18: If $f: (X,\tau) \to (Y,\sigma)$ is R*- irresolute and $g: (Y,\sigma) \to (Z,\eta)$ is a contra R*– continuous function ,then $g \circ f: X \rightarrow Z$ is contra R*-continuous.

Proof: Let V be open in Z. Since g is contra R*-continuous, g⁻¹(V) is R*-closed in Y. Since f is a contra R*-irresolute, $f^{-1}(g^{-1}(V))$ is R*-closed in X. Hence $g \circ f$ is contra R*-continuous.

Theorem3.19: If f: $(X,\tau) \rightarrow (Y,\sigma)$ is R*- continuous and the space X is R*-locally indiscrete, then f is contra continuous.

Proof : Let V be an open set in Y. Since f is R*-continuous $f^{-1}(V)$ is R*- open in X. And since X is locally

R*-indiscrete, $f^{-1}(V)$ is closed in X. Hence f is contra continuous.

Theorem 3.20: If f: $(X,\tau) \rightarrow (Y,\sigma)$ is contra R*-continuous, X is R*-T_{1/2} space, then f is RC-continuous.

Proof : Let V be open in Y. Since f is contra R*- continuous, $f^{-1}(V)$ is R*-closed in X. And X is R*-T_{1/2}

space, hence $f^{-1}(V)$ is regular closed in X. Thus for every open set V of Y, $f^{-1}(V)$ is regular closed in X. Hence f is RC-continuous.

Theorem 3.21: Suppose $R^*-O(X)$ is closed under arbitrary unions then the following are equivalent for a function f: $(X,\tau) \rightarrow (Y,\sigma)$,

- f is contra R*-continuous (i)
- for every closed subset V of Y, $f^{-1}(V) \in \mathbb{R}^*$ -O(X). (ii)

for each $x \in X$ and each $V \in C(Y, f(x))$, there exists a set $U \in R^*O(X, x)$ such that (iii) $f(U) \subset V.$

Proof : (i) \Rightarrow (ii): Let f be contra R*- continuous. Then $f^{-1}(V)$ is R*-closed in X for every open set V of Y. i.e $f^{-1}(V)$ is R*-open in X for every closed set V of Y. Hence $f^{-1}(V) \in R^* - O(X)$. (ii) \Rightarrow (i) :Obvious.

(ii) \Rightarrow (iii) : For every closed subset V of Y, $f^{-1}(V) \in \mathbb{R}^*$ -O(X). Then for each $x \in X$ and each $V \in C(Y, f(x))$, there exists a set $U \in \mathbb{R}^* - O(X)$ such that $f(U) \subset V$.

(iii) \Rightarrow (ii) : For each $x \in X$ and each $V \in C(Y, f(x))$, there exists a set $U_x \in R^* - O(X, x)$ such that $f(U_x) \subset V$ i.e. $x \in f^{-1}(V)$ and $f(x) \subset V$. So there exists $U \in R^* - O(X, x)$ such that $f^{-1}(V) = \bigcup \{U_x : x \in f^{-1}(V)\}$ and Hence $f^{-1}(V)$ is R*-open.

Definition 3.22:[7] For a function f: $X \rightarrow Y$, the subset $\{(x, f(x)): x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G(f).

Lemma 3.23: [3] Let G(f) be the graph of f ,for any subset $A \subset X$ and $B \subset Y$, we have $f(A) \cap B = \varphi$ if and only if $(A \times B) \cap G(f) = \varphi$. Definition 3.24: The graph G(f) of a function f: $X \to Y$ is said to be contra R*-closed if for each (x,y) $\in (X,Y) - G((f))$ there exists $U \in R * O(X,x)$ and $V \in C(Y,y)$ such that $(U \times V) \cap G(f) = \varphi$.

Lemma 3.25: The graph G(f) of a function f: $X \to Y$ is said to be contra R*-closed if for each (x,y) $\in (X,Y) - G((f))$ there exists $U \in R^*O(X,x)$ and $V \in C(Y,y)$ such that $f(U) \cap V = \varphi$. Proof: The proof is a direct consequence of definition 3.24 and lemma.3.23

IV. Almost contra R*-continuous function

Definition 4.1: A function $f: X \to Y$ is said to be almost contra R*-continuous is f^{-1} is R*-closed in X for each regular open set V in Y.

Theorem 4.2: If a function f: $X \rightarrow Y$ is almost contra R*-continuous and X is locally R *-indiscreet space, then f is almost continuous.

Proof: Let U be regular open set in Y. Since f is almost contra R*-continuous $f^{1}(U)$ is R*-closed set in X and X is locally R*-indiscreet space, which implies $f^{1}(U)$ is an open set in X. Therefore f is almost continuous.

Theorem 4.3: If a function f: $X \rightarrow Y$ is contra R*-continuous , then it is almost contra R*-continuous.

Proof: Obvious because every regular open set is open set.

Remark 4.4: The converse of the theorem need not be true in general as seen from the following example.

 $X=\{a,b,c\}=Y$, $= \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ τ $X, \phi, \{a\}, \{b\}, \{ab\}, \{b,c\}\}$ σ ={ $R^{*}-C(X)$ = $X, \phi, \{c\}, \{ab\}, \{b, c\}, \{c, a\}\}$. Define b, f(b { f(c) a, f(a))= с,

 $f^{-1}({b}) = {a}$ which is not R*-closed in X.

Theorem 4.5: The following are equivalent for a function f: $X \rightarrow Y$

- 1. f is almost contra R*- continuous
- 2. for every regular closed set F of Y, $f^{1}(F)$ is R^{*} -open set of X.

Proof: (i) Let F be a regular closed set in Y, then Y-F is a regular open set in Y. By

(i) $f^{1}(Y-F) = X-f^{1}(F)$ is R*-closed in X. Therefore (ii) holds.

(ii) \Rightarrow (i). Let G be a regular open set in Y. Then Y –G is regular closed in Y. By (ii) $f^{-1}(Y-G)$ is an R*-open set in X. This implies X - $f^{-1}(G)$ is R*-open which implies, $f^{-1}(G)$ is R*-closed set in X. Therefore (i) holds. **Theorem 4.6:** The following are equivalent for a function $f:X \rightarrow Y$

1. f is almost contra R*-continuous.

- 2. $f^{-1}(int(cl(G)))$ is a R*-closed set in X for every open set G of Y.
- 3. $f^{-1}(cl(int(F)))$ is a R*-open set in X for every open subset F of Y.

Proof: (i) \Rightarrow (ii).Let G be an open set in Y. Then int (cl(G)) is regular open set in Y. By (i) $f^{-1}(int(cl(G))) \in \mathbb{R}^*$ -C(X).

(ii)) \Rightarrow (i). Proof is obvious.

(i) \Rightarrow (iii).Let F be a closed set in Y. Then cl(int(F)) is a regular closed set in Y. By (i) $f^{-1}(cl(int(F))) \in$

 $R^{*}-O(X).$

(iii) \Rightarrow (i).Proof is obvious.

Definition 4.7: A space X is said to be

- 1. $R^*-T_{1/2}$ space [13] if every R^* -closed set is regular closed.
- 2. R^*-T_0 if for each pair of distinct points in X, there is an R^* -open set of X containing one point but not the other.
- 3. \mathbb{R}^* -T₁ if for every pair of distinct points x and y,there exists \mathbb{R}^* -open sets G and H such that $x \in G, y \notin Gandx \notin H, y \in H$.
- 4. R^*-T_2 if for every pair of distinct points x and y ,there exists disjoint R^* -open sets G and H such that $x \in Gandy \in H$.

Theorem 4.8: If f: $X \rightarrow Y$ is an almost contra R*-continuous injection and Y is weakly Hausdroff then X is R*- T_1 .

Proof: Suppose Y is weakly Hausdroff, for any distinct points x and y in X, there exists V and W regular closed sets in Y such that $f(x) \in V$, $f(y) \notin V$ and $f(y) \in W$ and $f(x) \notin W$. Since f is almost contra R*-

 $f^{-1}(V)$ and $f^{-1}(W)$ R*-open continuous are subsets Х such of that $x \in f^{-1}(V), y \notin f^{-1}(V), y \in f^{-1}(W)$ and $x \notin f^{-1}(W)$. This Х is shows that R*-T₁. **Corollary 4.9:** If f: $(X,\tau) \rightarrow (Y,\sigma)$ is a contra R*-continuous injection and Y is weakly Hausdroff, then X is R*- T_1 .

Proof: Every contra R^* -continuous is almost contra R^* -continuous and by the above theorem [4.8] the result follows.

Theorem:4.10 If $f:X \rightarrow Y$ is an almost contra R*-continuous injective function from a space X into the UltraHaudroffspaceY,thenYisanR*-T2.Proof: Let x and y be any two distinct points in X. Since f is an injective function such that

 $f(x) \neq f(y)$ and Y is Ultra Hausdorff space, there exists disjoint clopen sets U and V containing f(x) and f(y) respectively. Then $x \in f^{-1}(U)$ and $y \in f^{-1}(V)$, were $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint R*- open sets in X.

Therefore Y is \mathbb{R}^*-T_2 .

Definition:4.11 A topological space X is called a R*- normal space, if each pair of disjoint closed sets can be separated by disjoint R*-open sets. **Theorem:4.12** If $f:X \rightarrow Y$ is an almost contra R*-continuous, closed, injective function and Y is Ultra Normal, then X is R*-normal.

Proof: Let E and F be disjoint closed subsets of X. Since f is closed and injective f(E) and f(F) are disjoint closed sets in Y. Since Y is ultra normal there exists disjoint clopen sets in U and V in Y such that $f(E) \subset U$ and $f(F) \subset V$. This implies $E \subset f^{-1}(U)$ and $F \subset f^{-1}(V)$. Since f is an almost contra R*-continuous injection $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint R*-open sets in X. This show that X is R*-normal.

Theorem:4.13 For two functions $f:X \rightarrow Y$ and $k:Y \rightarrow Z$, let $k \circ f : X \rightarrow Z$ is a composition function. Then the following holds:

- (1) If f is almost contra R*-continuous and k is an R-map, then $k \circ f$ is almost contra R*-continuous.
- (2) If f is almost contra R*-continuous and k is perfectly continuous, then $k \circ f$ is R*-continuous and contra R*-continuous.
- (3) If f is almost contra R*-continuous and k is almost continuous, then $k \circ f$ is almost contra R*-continuous.

Proof: (1) Let V be any regular open set in Z. Since k is an R-map, k^{-1} (V) is regular open in Y. Since f is almost contra R*- continuous $f^{-1}(k^{-1}(V)) = (k \circ f)^{-1}$ (V) is R*-closed in X. Therefore $k \circ f$ is almost contra R*- continuous.

(2) Let V be an open set in Z. Since k is perfectly continuous, $k^{-1}(V)$ is clopen in Y.Since f is an almost contra R*- continuous $f^{-1}(k^{-1}(V)) = (k \circ f)^{-1}(V)$ is R*-open and R*-closed set in X. Therefore $k \circ f$ is R*- continuous and contra R*- continuous.

(3) Let V be a regular open set in Z. Since k is almost continuous, $k^{-1}(V)$ is open in Y. Since f is contra R*continuous $f^{-1}(k^{-1}(V)) = (k \circ f)^{-1}(V)$ is R*-closed in X. Therefore $k \circ f$ is almost contra R*-continuous.

Theorem:4.14 Let f: X \rightarrow Y is a contra R*-continuous function and g: Y \rightarrow Z is R*-continuous. If Y is R*-T_{1/2}, then $g \circ f : X \rightarrow Z$ is an almost contra R*-continuous function.

Proof: Let V be regular open and hence open set in Z. Since g is R*-continuous $g^{-1}(V)$ is R*- open in Y and Y is $T_{1/2}$ -space implies $g^{-1}(V)$ is regular open in Y. Since f is almost contra R*- continuous $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is R*-closed set in X. Therefore $g \circ f$ is almost contra R*-continuous.

Theorem:4.15 If f: X \rightarrow Y is surjective, strongly R*-open (or strongly R*-closed) and g:Y \rightarrow Z is a function such that $g \circ f : X \rightarrow Z$ is almost contra R*- continuous, then g is almost contra continuous.

Proof: Let V be any regular closed set (resp regular open) set in Z. Since $g \circ f$ is almost contra R*-continuous $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is R*-open (resp R*-closed) in X. Since f is surjective and strongly R*-open (or strongly R*-closed). $f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is R*-open (resp R*-closed). Therefore g is almost contra

R*-continuous.

Definition:4.16 A topological space X is said to be R*-ultra connected if every two non empty R*-closed subsets of X intersect.

Theorem:4.17 If X is R*-ultra connected and f: $X \rightarrow Y$ is an almost contra R*-continuous surjection, then Y is hyperconnected.

Proof: Let X be R*-ultraconnected and f: X \rightarrow Y is an almost contra R*-continuous surjection. Suppose Y is not hyperconnected. Then there is an open set V such that V is not dense in Y. Therefore there exists non empty regular open subsets B₁ = intcl(V) and B₂ =Y- cl(V) in Y. Since f is an almost contra R*-continuous surjection, $f^{-1}(B_1)$ and $f^{-1}(B_2)$ are disjoint R*-closed sets in X. This is contrary to the fact that X is R*-ultra connected

.Therefore Y is hyperconnected.

V. R*-Regular graphs

Definition 5.1: A graph G(f) of a function f: $X \to Y$ is said to be R*-regular if for each $(x,y) \in (X,Y) - G((f))$ there exists $U \in R^*C(X,x)$ and $V \in RO(Y,y)$ such that $(U \times V) \cap G(f) = \varphi$.

Lemma 5.2: The graph G(f) of a function f: $X \to Y$ is R*-regular (resp strong contra R* closed) in $X \times Y$ if and only if for each $(x,y) \in (X,Y) - G((f))$, there is an R* -closed (resp R*-open) set U in X containing x and $V \in RO(Y, y)$ (resp $V \in RC(Y, y)$) such that $f(U) \cap V = \phi$.

Proof: Obvious.

Theorem 5.3: If a function f: $X \to Y$ is almost R*-continuous and Y is T_2 then G(f) is R*-regular in $X \times Y$. Proof: Let $(x, y) \in (X, Y) - G(f)$. Then $y \neq f(x)$. Since Y is T_2 , there exists open set V and W in Y such that $f(x) \in V$, $y \in WandV \cap W = \phi$. Then $int(cl(V)) \cap int(cl(W)) = \phi$. Since f is almost R*-continuous is $f^{-1}(int(cl(V)))$ is R* -closed set in X containing x. Set $U = f^{-1}(int(cl(V)))$, then $f(U) \subset int(cl(V))$. Therefore $f(U) \cap int(cl(W)) = \phi$. Hence G(f) is R*-regular in $X \times Y$.

Theorem:5.4 Let f: $X \rightarrow Y$ be a function and let g: $X \rightarrow X \times Y$ be the graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. If g is almost contra R*-continuous function, then f is an almost contra R*-continuous.

Proof: Let
$$V \in RC(Y)$$
, then

$$X \times V = X \times Cl(\operatorname{int}(V)) = Cl(\operatorname{int}(X)) \times Cl(\operatorname{int}(V)) = Cl(\operatorname{int}(X \times V)).$$

Therefore, $X \times V \in RC(X \times Y)$. Since g is almost contra R*-continuous
$$\int_{-1}^{-1} (V \times V) = R^* O(V) \text{ Transitional optimal optim$$

 $f^{-1}(V) = g^{-1}(X \times V) \in R^*O(X)$. Thus f is almost contra R*-continuous.

Theorem:5.5 Let $f: X \rightarrow Y$ have a R*-regular G(f). If f is injective, then X is R*-T₀.

Proof: Let x and y be two distinct points of X. Then $(x, f(y)) \in (X, Y) - G(f)$. Since G(f) is R^* -regular, there exists R*-closed set U in X containing x and $V \in RO(Y, f(y))$ such that $f(U) \cap V = \phi$ by lemma 5.2

and hence $U \cap f^{-1}(V) = \phi$. Therefore $y \notin U$. Thus $y \in X - U$ and $X \notin of X - U$ and X-U is R*-open set in X. This implies that X is R*-T₀.

Theorem:5.6 Let $f: X \rightarrow Y$ have a R*-regular G(f). If f is surjective then Y is weakly T₂.

Proof:Let y_1 and y_2 be two distinct points of Y. Since f is surjective $f(x) = y_1$ for some $x \in Xand(x, y_2) \in X \times Y - G(f)$. By lemma 5.2, there exists a R*-closed set U of X and $F \in RO(Y)$ such that $(x, y_2) \in U \times Fandf(U) \cap F = \phi$. Hence $Y_1 \notin ofF$ Then $Y_2 \notin ofY - F \in RC(Y)$ and $Y_1 \in Y - F$. This implies that Y is weakly T_2 .

References

- [1]. S.P Arya and R Gupta "On strongly continuous mappings". Kyunpook Math., J.14(1974), 131-143.
- [2]. C.W.Baker, On contra almost β continuous functions, Kochi J.Math, 1:1:8,2006
- [3]. S.S.Benchalli, Umadevi I Neeli and G.P.Siddapur, Almost Contra $g\delta s$ Continuous Functions in topological Spaces, Journal of Adv. Stu. In Topology, Vol 3, No 3.2012, 76-85.
- [4]. Cameron D.E , Properties of S-closed spaces, Proc.amer Math.Soc.72, 1978, 581-586.
- [5]. J.Dontchev, Contra continuous functions and strongly S -closed spaces ,Internt J.Math.Sci., 19(1996), 15 -31.
- [6]. J.Dontchev and T.Noiri, Contra semi continuous functions, Mathematica Pannonica 10(2):159-168(1999).
- [7]. E.Ekici, Almost contra pre continuous functions, Bull. Malaysian. Math. Sci. Soc. 27:53:65, 2004.
- [8]. E.Ekici, On contra πg -continuous functions, Chaos, Solitons and Fractals, 35, (2008), 71-81.
- [9]. Gangster.M and Reilly.I,More on Almost S-continuity,Indian .J.Math.1999,41:139-146.
- [10]. Y.Gnanambal, On generalizes preregular closed sets in topological spaces, Indian J.Pure Appl.Math.28(1997)351-360.
- [11]. Jafari.S and Noiri.T,On contra pre continuous functions,Bull.Malays.Math.Sci.Soc 2002:25:15-28.
- [12]. C.Janaki and Renu Thomas, "On R*-closed sets in topological Spaces" Int. journal of Math Archive-3(8),2012,3067-3074.
- [13]. C.Janaki and Renu Thomas, R*-closed maps and R*-open maps in topological Spaces. Global Research Analysis. Vol 2, issue 6 (2013)162-165.
- [14]. S.I. Mahmood,On Generalized Regular Continuous Functions in Topological Spaces,Ibn Al Haitham Journal for pure and applied science,No 3,Vol 25,377- 385,2012
- [15]. N.Nagaveni, Studies on Generalization of Homeomorphisms in Topological Spaces, Ph.D Thesis Bharathiar Univ.Coimbatore, 1999.
- [16]. T.Noiri and V.Popa, A unified theory on contra continuity for functions, Ann.Univ.Sci.Budapest 44(2002),115-137.
- [17]. Palaniappan and K C Rao, "Regular generalized closed sets", Kyungpook Math. J.33 (1993), 211-219
- [18]. R. Parimelzhagan and N.Nagaveni "Weakly generalized closed maps" world academy of science, engineering and technology 26.2009.
- [19]. Sanjay Mishra, On Regular Generalized Weakly-closed sets in Topological Spaces, Int. Journal of Math Analysis, Vol.6,(2012).no 39,1939-1952.
- [20]. Singal M.K.and Singal A.R, Almost continuous mappings, Yokohama. Math. J.16(1968)63-73.
- [21]. Soundarajan T., Weakly Hausdroff Spaces and the cardinality of topological spaces in general topology and its relation to modern analysis and algebra.III proc. Taum, conf.Kanpur(1968)Academic,Prague(1971)301-306.
- [22]. R.Staum, The algebra of bounded continuous functions into a non-archiemedian field. Pacific. J.Math 50:169-185(1974)
- [23]. Steen, L.A and Seeback Jr.J.A.1970, Counter examples in topology, Holt, Rinenhart and Wiston, Newyork, 1970.