On a Parametric Spline function

F.A.Abd El-Salam
Department of Mathematics and Engineering Physics, Faculty of Engineering, Benha University, Shoubra-Cairo, Egypt

Abstract

This paper is concerned with the development of non-polynomial spline function approximation method to obtain numerical solution of ordinary and partial differential equations. The parametric spline function which depends on a parameter $p<0$, is discussed which reduced to the ordinary cubic spline [1] when the parameter $p=0$.

The numerical method is tested by considering an example.
Keywords : Cubic spline function, Parametric spline function, finite difference method.

I. Introduction

We consider a mesh Δ with nodal points x_{i} on the interval $[a, b]$ such that $\Delta: a=x_{0}<x_{1}<\ldots<x_{N}=b$, where $h=x_{i}-x_{i-1}, i=1(1) N$. Assume we are given the values $\left\{y_{i}\right\}_{i=0}^{N}$ of the function $y(x)$, with $[a, b]$ as its domain of definition. A spline function of degree \boldsymbol{m} with nodes at the points $x_{i}, i=1, . ., N$ is a function $s_{\Delta}(x)$ with the following properties :
(i) $s_{\Delta}(x)$ is a polynomial of degree m in each subinterval $\left[x_{i}, x_{i+1}\right], i=0,1,2, \ldots, N-1$.
(ii) $s_{\Delta}(x)$ and its first $(m-1)$ derivatives are continuous on $[a, b]$.

A cubic spline function $s_{\Delta}(x)$, of class $C^{2}[a, b]$ interpolating to a function $y(x)$ defined on $[a, b]$ is such that in each interval $\left[x_{i-1}, x_{i}\right], s_{\Delta}(x)$ is a polynomial of degree at most three and the first and second derivatives of $s_{\Delta}(x)$ are continuous on $[a, b]$.

II. Parametric Spline Function.

Given an interval $[a, b]$ and a mesh points with knots $a=x_{0}<x_{1}<\ldots<x_{n}=b$, with $h=x_{i}-x_{i-1}, i=1,2, \ldots, N$. A function $s_{i}(x) \subset C^{2}[a, b]$ which interpolates the function $\boldsymbol{y}(\boldsymbol{x})$ at the knots \boldsymbol{x}_{i} depends on the parameter $p<0$ and reduces to a cubic spline function in the interval $\left[x_{i-1}, x_{i}\right]$ as $p=0$ is termed a parametric spline function. The parametric spline function when $p>0$ is discussed in [2]. If $s_{i}(x)$ is a parametric spline function in the interval $\left[x_{i-1}, x_{i}\right]$, then it satisfies the following differential equation:

$$
\begin{equation*}
s_{i}^{\prime \prime}(x)-p^{2} s_{i}(x)=\left(M_{i-1}-p^{2} y_{i-1}\right)\left(\frac{x_{i}-x}{h}\right)+\left(M_{i}-p^{2} y_{i}\right)\left(\frac{x-x_{i-1}}{h}\right) \tag{1}
\end{equation*}
$$

where $M_{i}=y^{\prime \prime}\left(x_{i}\right), s_{i}\left(x_{i}\right)=y\left(x_{i}\right)$ and \boldsymbol{p} is a parameter and we denote to $y\left(x_{i}\right)$ by y_{i},
Solving the differential equation (1) on the interval $\left[x_{i-1}, x_{i}\right]$, subject to $s_{i}\left(x_{i}\right)=y_{i}$ and $s_{i-1}\left(x_{i-1}\right)=y_{i-1}$ we obtain:

$$
\begin{align*}
s_{i}(x)= & \frac{h^{2}}{k^{2} \sinh k}\left\{M_{i} \sinh k z_{i-1}-M_{i-1} \sinh k z_{i}\right\} \\
& -\frac{h^{2}}{k^{2}}\left\{\left(M_{i}-w y_{i}\right) z_{i-1}-\left(M_{i-1}-w y_{i-1}\right) z_{i}\right\} \tag{2}
\end{align*}
$$

where $z_{i-1}=\left(\frac{x-x_{i-1}}{h}\right), w=\frac{k^{2}}{h^{2}}$ and $k=p h$

The continuity of the first derivative of $s_{i}(x)$ at x_{i} in the form $s^{\prime}\left(x_{i}\right)=s_{i+1}^{\prime}\left(x_{i}\right)$ which gives
$y_{i+1}-2 y_{i}+y_{i-1}=h^{2}\left\{\alpha M_{i+1}+2 \beta M_{i}+\alpha M_{i-1}\right\}$
where
$\alpha=k^{-2}(1-k \operatorname{csch} k)$
$\beta=-k^{-2}(1-k \operatorname{coth} k)$
The consistency relation for (3) leads to equation $2 \alpha+2 \beta=1$. Which may also be expressed as $k / 2=\tan k / 2$. This equation has a zero root and an infinite number of non-zero roots. The smallest positive being $k=8.986818916$ and for $k / 2=\tan k / 2 \neq 0, \alpha+\beta=1 / 2$. For the cubic spline $\alpha=1 / 6, \beta=1 / 3$.
From equation (2) some spline relations are derived which useful in solving boundary value problems . differentiate (2) at x_{i}, x_{i+1} then
$s_{i}^{\prime}\left(x_{i}\right)=-h\left(\alpha M_{i+1}+\beta M_{i}\right)+\left(\frac{y_{i+1}-y_{i}}{h}\right)$
$s_{i}^{\prime}\left(x_{i+1}\right)=h\left(\beta M_{i+1}+\alpha M_{i}\right)+\left(\frac{y_{i+1}-y_{i}}{h}\right)$
$s_{i}^{\prime}\left(x_{i}\right)+s_{i}^{\prime}\left(x_{i+1}\right)=h(\beta-\alpha)\left(M_{i+1}+M_{i}\right)+2\left(\frac{y_{i+1}-y_{i}}{h}\right)$
$s_{i}^{\prime}\left(x_{i+1}\right)+s_{i}^{\prime}\left(x_{i}\right)=h(\beta+\alpha)\left(M_{i+1}+M_{i}\right)$
when $p=0$ equation (1) take the form
$s_{i}^{\prime \prime}(x)=\left(M_{i-1}\right)\left(\frac{x_{i}-x}{h}\right)+\left(M_{i}\right)\left(\frac{x-x_{i-1}}{h}\right)$
which leads to the cubic spline function

$$
\begin{aligned}
s_{i}(x)= & \left(M_{i-1}\right) \frac{\left(x_{i}-x\right)^{3}}{6 h}+\left(M_{i}\right) \frac{\left(x-x_{i-1}\right)^{3}}{h} \\
& +\left(y_{i-1}-\frac{h^{2}}{6} M_{i-1}\right) \frac{\left(x_{i}-x\right)}{h}+\left(y_{i}-\frac{h^{2}}{6} M_{i}\right) \frac{\left(x-x_{i-1}\right)}{h} \\
& x_{i-1} \leq x \leq x_{i} .
\end{aligned}
$$

III. Application

(a) Numerical method for solving second-order differential equation.

Consider the second order differential equation

$$
\begin{align*}
& y^{\prime \prime}=f(x, y), \quad a \leq x \leq b \tag{12}\\
& y(a)=y_{0} \tag{13}\\
& y(b)=y_{N} \tag{14}
\end{align*}
$$

The difference equation (3) can be used to determine the approximate values of $y\left(x_{i}\right)$ at the knots points $\left\{x_{i}\right\}, i=1,2, \ldots, N$ where $N=\frac{b-a}{h}$. The difference equation when equivalent to (3) is given by

$$
\begin{equation*}
y_{i+1}-2 y_{i}+y_{i-1}=\frac{h^{2}}{k^{2}}\left\{(1-k \operatorname{csch} k) f_{i+1}-2(1-k \operatorname{coth} k) f_{i}+(1-k \operatorname{csch} k) f_{i-1}\right\} \tag{15}
\end{equation*}
$$

where $f_{i}=f\left(x_{i}, x_{i}\right)$
Equation (15) is explicit in y_{i+1} and its suitable for solving the differential equation (12)-(14).

(b) Numerical Example.

Consider the differential equation which describe the fluid flow inside a circular cylinder in the polar form $\nabla^{2} \psi=0$
where $\quad \nabla^{2} \psi=\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \psi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}}$
with boundary conditions
$\psi=0$,
on $r=1$
$\psi=r \sin \theta$
as $r \rightarrow \infty$
$\psi=0 \quad$ for $\theta=0, \pi$
By using the transformation $r=e^{t}$ the problem transform to

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial t^{2}}+\frac{\partial^{2} \psi}{\partial \theta^{2}}=0 \tag{16}
\end{equation*}
$$

with boundary conditions
$\psi=0$,
on $t=0$
$\psi=e^{t} \sin \theta$
as $r \rightarrow \infty$
$\psi=0$
for $\theta=0, \pi$
by considering the parametric spline function approximation in t-direction with step size $h=0.2$ and mish points $t_{i}=t_{0}+i h, \quad i=1,2, \ldots, N \quad$ In θ-direction we apply finite difference approach with step size $l=0.1 \pi$ with knots points $\theta_{j}=\theta_{0}+j l, \quad j=1,2, \ldots, L$.and t_{∞} is taken as 0.3 . Equation (16) can be written in the form
$M_{i, j}+\frac{\psi_{i, j+1}-2 \psi_{i, j}+\psi_{i, j-1}}{l^{2}}=0$
and by using equation (3) we have the system

$$
\begin{aligned}
\psi_{i, j}= & \frac{1}{2}\left(\psi_{i+1, j}+\psi_{i-1, j}\right)-\frac{h^{2}}{2}\left\{\alpha M_{i+1, j}+2 \beta M_{i, j}+\alpha M_{i-1, j}\right\} \\
M_{i, j}= & -\frac{\psi_{i, j+1}-2 \psi_{i, j}+\psi_{i, j-1}}{l^{2}} \\
& i=1,2, \ldots, N-1, \quad j=1,2, \ldots, L-1 .
\end{aligned}
$$

From the boundary conditions we have
$M_{0, j}=0$,
$M_{N, j}=\frac{1}{l^{2}}\left(\psi_{N, j+1}-2 \psi_{N, j}+\psi_{N, j-1}\right)$,
$\psi_{0, j}=0$,
$\psi_{N, j}=e^{3} \sin \theta_{j}$
The exact solution $\psi=2 \sinh t \sin \theta$ we use Mathematica program to obtain the following numerical result with $N=6, L=10$. The computational results are present in the following table with the exact values between the brackets. This problem has earlier been discussed in [2].

	$t=0.2$	$t=0.4$	$t=0.6$	$t=0.8$	$t=1.0$
$\theta=0.1 \pi$	0.125356	0.255717	0.39629	0.552692	0.731165
	(0.124432)	(0.253859)	(0.393474)	(0.54888)	(0.726314)
$\theta=0.2 \pi$	0.23844	0.486403	0.753791	1.5128	1.39067
	(0.236686)	(0.485633)	(0.748431)	(1.4403)	(1.38153)
$\theta=0.3 \pi$	0.328185	0.669477	1.0375	1.44697	1.91421
	(0.325768)	(0.664611)	(1.03013)	(1.43699)	(1.90152)

$\theta=0.4 \pi$	0.385805				
(0.382964)	0.787017	1.21966 (0.781297)	1.70101 (1.21099)	2.25029 (1.68928)	(2.23537)
$\theta=0.5 \pi$	0.405659	0.827519	1.28243	1.78855	2.3661
	(0.402627)	(0.821505)	(1.27331)	(1.77621)	(2.3504)
$\theta=0.6 \pi$	0.385805	0.787017	1.2966	1.70101	2.25029
	(0.382964)	(0.781297)	(1.21099)	(1.68928)	(2.23537)
$\theta=0.7 \pi$	0.328185	0.669477	1.0375	1.44697	1.91421
(0.325768)	(0.664611)	(1.03013)	(1.43699)	(1.90152)	
$\theta=0.8 \pi$	0.23444	0.486403	0.753791	1.5128	1.39067
	(0.236686)	$0.485633)$	(0.748431)	(1.4403)	(1.38153)
$\theta=0.9 \pi$	0.125356	0.255717	0.39629	0.552692	0.731165
(0.124432)	(0.253859)	(0.393474)	(0.54888)	(0.726314)	

References

[1] J.Ahlberg, E.Nilson, J.Walsh, The Theory of Splines and Their Applications, Academic Press, New York (1967).
[2] C.V.Raghavarao and S.T.P.T.Srinivas, Note on parametric spline function approximation, Computer Math. Appl., 29(12),67-73 (1995).
[3] C.V.Raghavarao, Y.V.S.S.Sanyasiraju and S.Suresh , A note on application of cubic splines to two point boundary value problems, Computers Math. Appl.,27(11),45-48(1994).
[4] M.K.Jain and A.Tariq, Spline function approximation for differential equations, Comp.Math. in Appl. Mech. and Eng., 26,129143(1981).

