A Note on applications of q-Theory

Prashant Singh ${ }^{1}$, Pramod Kumar Mishra ${ }^{2}$
${ }^{1}$ (Department of Computer Science, Banaras Hindu University, India)
${ }^{2}$ (Deparment of Computer Science, Banaras Hindu University, India)

Abstract

This paper deals with describing application of q-theory in different fields of mathematics and future areas where its use can be extended .

Keywords: q-analogue, q-function, q-hypergeometric function

I. Introduction

Basic hypergeometric series are called q-analogues (basic analogues or q-extensions) of hypergeometric series.
q-hypergeometric series, are q-analog generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series x_{n} is called hypergeometric if the ratio of successive terms x_{n+1} / x_{n} is a rational function of n. If the ratio of successive terms is a rational function of q^{n}, then the series is called a basic hypergeometric series. The number q is called the base or parameter which lies between 0 and 1.Value of q determines accuracy of analogue of any classical function.

1.1 Basic Differentiation operator

$\mathrm{D}_{\mathrm{q}, \mathrm{x}} \mathrm{f}(\mathrm{x})=\frac{\mathrm{f}(\mathrm{qx})-\mathrm{f}(\mathrm{x})}{x(q-1)}$

1.2 q-Integration

$\int_{a}^{b} f(x) d q x=(1-q)\left\{b \sum_{r=0}^{\infty} q^{r} f\left(q^{r} b\right)-a \sum_{r=0}^{\infty} q^{r} f\left(q^{r} a\right)\right\}$

1.3 q-exponential function

A whole family of q exponential function can be defined as
$\mathrm{E}(\mathrm{q}, \beta ; \mathrm{x})=\sum_{r=0}^{\infty} x^{r} q^{\beta \mathrm{r}(\mathrm{r}-1)} /[r ; q]$!
depending upon value of β i.e. $\beta=0, \beta=1 / 2$ and $\beta=1 / 4$ repectively.

II. q-analogue of some statistical functions

2.1 Forward Differences

If $y_{0}, y_{1}, y_{2}, \ldots, y n$ denote a set of values of y, where $y=f(z)$,then $y_{1}-y_{0}, y_{2}-y_{1}, \ldots, y_{n}-y_{n-1}$ are called differences of y, where Δ is called forward difference operator and ∇ is called backward difference operator and as $0<\mathrm{q}<1$, $\mathrm{f}(\mathrm{z})>\mathrm{f}(\mathrm{qz})$.
$\Delta f(z)=f(z)-f(q z)$
$\Delta^{2} f(z)=\Delta f(z)-\Delta f(q z)=f\left(q^{2} z\right)-2 f(q z)+f(z)$
$\Delta^{3} f(z)=f\left(q^{3} z\right)-3 f\left(q^{2} z\right)+3 f(q z)-f(z)$
$\Delta^{4} f(z)=f\left(q^{4} z\right)-4 f\left(q^{3} z\right)+6 f\left(q^{2} z\right)-4 f(q z)+f(z)$

2.2 Backward Differences

$$
\begin{align*}
& \nabla f(q z)=f(q z)-f(z) \tag{8}\\
& \nabla f\left(q^{2} z\right)=f\left(q^{2} z\right)-f(q z) \tag{9}\\
& \nabla^{2} f\left(q^{2} z\right)=\nabla f\left(q^{2} z\right)-\nabla f(q z)=f\left(q^{2} z\right)-2 f(q z)+f(z) \tag{10}\\
& \nabla^{3} f\left(q^{3} z\right)=f\left(q^{3} z\right)-3 f\left(q^{2} z\right)+3 f(q z)-f(z) \tag{11}
\end{align*}
$$

2.3 q -analogue of Moment Generating Function

Let X be a random variable.
Then, $\operatorname{EXPEC}\left(E_{q}(t x)\right)=\operatorname{EXPEC}\left(\sum \frac{(t x)^{r}}{[r ; q]!}\right)=1+t \mu_{1}+\frac{t^{2}}{[2 ; q]!} \mu_{2}+\cdots+\frac{t^{r}}{[r ; q]!} \mu_{r}$,
where EXPEC is expected value.
The coefficient of $\frac{t^{r}}{[r ; q]!}$ in the expression is μ_{r}, the $\mathrm{r}^{\text {th }}$ moment of X about origin.

MGF for discrete random variable with probability distribution

X:	x1	x2..............xn
$\mathrm{P}(\mathrm{x})$:	p1	p2..............pn

$$
\begin{equation*}
M(t)=\operatorname{EXPEC}(E(q, t x))=\sum E_{q}(t X) p_{i} \tag{13}
\end{equation*}
$$

MGF for a Continuous Random Variable

Let X be a continuous random variable with probability density function $f(x)$

$$
\begin{equation*}
M(t)=\operatorname{Expec}(E(q, t x))=\int_{-\infty}^{\infty} \boldsymbol{E}(\boldsymbol{q}, \boldsymbol{t x}) \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d}(\boldsymbol{q} \boldsymbol{x}) \tag{14}
\end{equation*}
$$

$\operatorname{Expec}(\mathrm{E}(\mathrm{q}, \mathrm{tx}))$ is mgf about origin.
$\operatorname{Expec}(\mathrm{E}(\mathrm{q}, \mathrm{t}(\mathrm{x}-\mathrm{a}))$ is mgf about point a.
$\operatorname{Expec}(E(q, t(x-\bar{x}))$ is $m g f$ about origin.

Properties of mgf

$$
\begin{align*}
& \operatorname{Expec}(E(q, t(x+y)))=\operatorname{Expec}(E(q, t x))+\operatorname{Expec}(E(q, t y)) \tag{15}\\
& \operatorname{Expec}\left(E_{q}(t(x+y))\right)=\operatorname{Expec}\left(E_{q}(t x)\right)+\operatorname{Expec}\left(E_{q}(t y)\right) \tag{16}\\
& \operatorname{Expec}\left(E_{q}(t(u+c))\right)=E_{q}(t u)+\operatorname{Expec}\left(E_{q}(t c)\right) \tag{17}
\end{align*}
$$

2.4 q -Distribution Function

If $F_{q}(x)=\int_{-\infty}^{\infty} f(x) d(q x)=P(X \leq x)$ then the function $F_{q}(x)$ is the probability that the value of the variable will be less or equal to x. Thus, $F_{q}(x)=P(X \leq x)$ and
$F_{q}(b)-F_{q}(a)=\int_{a}^{b} f(x) d(q x)=P(a \leq X \leq b) . F_{q}(x)$ is called the cumulative distribution function of X or simply distribution function.

Properties
 $F_{q}(-\infty)=0$ and $F_{q}(\infty)=1$

2.5 q- analogue of Differential Equation
 Solution of second order linear differential equation with constant coefficients

$D_{q}^{2} y-a_{1} D_{q}^{1} y+a_{2}=0$
If auxiliary equation has real and distinct roots m_{1} and m_{2}, general solution is

$$
\begin{equation*}
y=A E_{q}\left(m_{1} \mathrm{x}\right)+\mathrm{B} E_{q}\left(m_{2} \mathrm{x}\right) \tag{20}
\end{equation*}
$$

or
$y=A E\left(q ; m_{1} \mathrm{x}\right)+\mathrm{BE}\left(q ; m_{2} \mathrm{x}\right)$
or
$y=A E\left(1 / q ; m_{1} \sqrt{ } q \mathrm{x}\right)+\mathrm{BE}\left(1 / q ; m_{2} \sqrt{ } q \mathrm{x}\right)$
Real and equal roots
If $\mathrm{m} 1=\mathrm{m} 2=\mathrm{m}$
$\mathrm{y}=(\mathrm{Ax}+\mathrm{B}) \mathrm{E}_{\mathrm{q}}(\mathrm{mx})$ or $\mathrm{y}=(\mathrm{Ax}+\mathrm{B}) \mathrm{E}(\mathrm{q} ; \mathrm{m} \sqrt{ } q x)$ or $\mathrm{y}=(\mathrm{Ax}+\mathrm{B}) \mathrm{E}(1 / \mathrm{q} ; \mathrm{m} \sqrt{ } q x)$
Complex Conjugate Roots
If α and β be the real and imaginary parts of the roots then general solution will take form $y=C 1 E(q ; \alpha \sqrt{q x}) \sin (q ;(\beta \mathrm{x}+\mathrm{C} 2)$

2.6 Basic Analogue of Integral Transforms

2.6.1 q-Laplace Transform

$$
\begin{equation*}
f(s)=\int_{0}^{\infty} F(t) E(q,-s t) d(q t) \tag{25}
\end{equation*}
$$

2.6.2 \mathbf{q}-Fourier Transform

$f(s)=\int_{-\infty}^{\infty} F(t) E(q,-i s t) d(q t)$
2.6.3q-MellinTransform
$f(s)=\int_{0}^{\infty} F(t) t^{s-1} d(q t)$

2.6.4 \mathbf{q}-HankelTransform

$f(s)=\int_{0}^{\infty} F(t) t J_{n}(s t) d(q t)$

2.7 Basic Analogue of Newton Cotes Integration

$\mathrm{I}=\int_{a}^{b} w(x) f(x) d q x=\sum_{k=0}^{n} m_{k} f\left(x_{k}\right) \quad$ where $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ are nodes distributed within limits of integration.
$R_{n}=(1-q)\left\{b \sum_{r=0}^{\infty} q^{r} w\left(q^{r} b\right) f\left(q^{r} b\right)-a \sum_{r=0}^{\infty} q^{r} w\left(q^{r} a\right) f\left(q^{r} a\right)\right\}-\sum_{k=0}^{n} m_{k} f\left(x_{k}\right)$
R_{n} is the error term.
If $\mathrm{w}(\mathrm{x})=1$ and nodes $\mathrm{x}_{\mathrm{k}}^{\mathrm{s}}$ are distributed in $[\mathrm{a}, \mathrm{b}]$ with $\mathrm{x}_{0}=\mathrm{a}, \mathrm{x}_{\mathrm{n}}=\mathrm{b}$ and $\mathrm{h}=(\mathrm{b}-\mathrm{a}) / \mathrm{n}, \mathrm{x}_{\mathrm{k}}=\mathrm{x}_{0}+\mathrm{kh}, \mathrm{k} \in \mathrm{n}$.
$(1-q)\left\{b \sum_{r=0}^{\infty} q^{r} w\left(q^{r} b\right) f\left(q^{r} b\right)-a \sum_{r=0}^{\infty} q^{r} w\left(q^{r} a\right) f\left(q^{r} a\right)\right\}=\frac{(b-a)[f(a)+f(b)]}{[2 ; q]!}$
where $\frac{(b-a)}{[2 ; q]!}=h$.
By putting $\mathrm{w}(\mathrm{x})=1, \mathrm{n}=1, \mathrm{f}(\mathrm{x})=\mathrm{x}$ in $\int_{a}^{b} w(x) f(x) d q x=\sum_{k=0}^{n} m_{k} f\left(x_{k}\right)$ we get,
$m_{0}=m_{1}=\frac{(b-a)}{1+q}$
$\int_{a}^{b} w(x) f(x) d q x=\frac{(b-a)}{[2 ; q]!}(f(a)+f(b))$
which is analogue of Trapezoidal Rule.
$\mathrm{R}_{\mathrm{n}}=\frac{-h^{3}}{12} D_{q}^{2} f(\xi)$

$$
\begin{equation*}
=\frac{-h^{3}}{12 q \xi^{2}(q-1)^{2}}\left(f\left(q^{2} \xi\right)-[2 ; q] f(q \xi)+q f(\xi)\right] \tag{32}
\end{equation*}
$$

$$
=\frac{-h^{3}}{12} \frac{\left[q_{2} f\left(q_{1}^{2} \xi\right)+q_{1} f\left(q_{2}^{2} \xi\right)-q_{1} f\left(q_{1} q_{2} \xi\right)-q_{2} f\left(q_{1} q_{2} \xi\right]\right)}{\left(q_{1}-q_{2}\right)^{2} \xi^{2}}
$$

By putting $n=2$ and $n=3$ we can easily get analogue for Simpson's $1 / 3$ and Simpsons's $3 / 8$ rule.

2.7.1 q-Simpson's $\mathbf{1 / 3}$ Rule

By putting $\mathrm{w}(\mathrm{x})=1, \mathrm{n}=2, \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ in $\int_{a}^{b} w(x) f(x) d q x=\sum_{k=0}^{n} m_{k} f\left(x_{k}\right)$
we get,
$m_{0}=\frac{(b-a)}{[3 ; q]}, m_{1}=\frac{4(b-a)}{[3 ; q]}, m_{2}=\frac{(b-a)}{[3 ; q]}$

2.7.2 q-Simpsons's 3/8 Rule

By putting $\mathrm{w}(\mathrm{x})=1, \mathrm{n}=3, \mathrm{f}(\mathrm{x})=\mathrm{x}^{3} \mathrm{in} \int_{a}^{b} w(x) f(x) d q x=\sum_{k=0}^{n} m_{k} f\left(x_{k}\right)$
we get,
$m_{0}=\frac{3(b-a)}{2[4 ; q]}, m_{1}=\frac{9(b-a)}{2[4 ; q]}, m_{2}=\frac{9(b-a)}{2[4 ; q]}, m_{3}=\frac{3(b-a)}{2[4 ; q]}$

For a method of order m

Error $=R_{n}=\frac{c}{[m+1 ; q]!} D_{q}^{n} f(\xi)$,
where $\mathrm{a}<\xi<\mathrm{b}$
Error terms in Trapezoidal Rule, Simpson's 1/3 Rule, Simpson's 3/8Rule
$E_{\text {trp }}=-\frac{h^{3}}{12} D_{q}^{2} f(\xi), E_{s m p ~} 1 / 3=-\frac{C h^{4}}{24} D_{q}^{3} f(\xi), E_{\text {smp } 3 / 8}=-\frac{3 h^{5}}{80} D_{q}^{4} f(\xi)$

Weights for Newton's Cotes Integration methods when q tends to one.

n	m_{0}	$\mathrm{~m}_{1}$	$\mathrm{~m}_{2}$	$\mathrm{~m}_{3}$
0	$1 / 2$	$1 / 2$		
1	$1 / 3$	$4 / 3$	$1 / 3$	$3 / 8$
2	$3 / 8$	$9 / 8$	$9 / 8$	

2.8 q-analogue of Lobatto Integration

$\int_{-1}^{1} f(x) d q x=2(1-q) \sum_{r=0}^{\infty} q^{r} f\left(q^{r}\right)=m_{0} f(-1)+m_{n} f(n)+\sum_{k=1}^{n-1} m_{k} f\left(x_{k}\right)$
For $\mathrm{n}=2, \int_{-1}^{1} f(x) d q x=\frac{1}{1+q+q^{2}}[f(-1)+f(1)+4 f(0)]$

2.9 q- analogue of Radau Integration

$\int_{-1}^{1} f(x) d q x=2(1-q) \sum_{r=0}^{\infty} q^{r} f\left(q^{r}\right)=m_{0} f(-1)+\sum_{k=1}^{n} m_{k} f\left(x_{k}\right)$
For $\mathrm{n}=2$
$\int_{-1}^{1} f(x) d q x=\frac{2}{3\left(1+q+q^{2}\right)} f(-1)+\frac{16+\sqrt{6}}{6\left(1+q+q^{2}\right)} f\left(\frac{1-\sqrt{6}}{5}\right)+\frac{16-\sqrt{6}}{6\left(1+q+q^{2}\right)} f\left(\frac{1+\sqrt{6}}{5}\right)$

Predictor Correctors Method

2.10 q- analogue of Milne's Method

$y_{4}=y_{0}+h\left[4 f_{0}+16 \frac{\Delta_{q} f_{0}}{[2 ; q]}+\frac{32[2 ; q]-8[3 ; q]}{[2 ; q][3 ; q]} \Delta_{q}^{2} f_{0}+\frac{2}{3} \Delta_{q}^{3} f_{0}\left\{\frac{[2 ; q][3 ; q] 8^{4}-3 * 16^{2}[4 ; q][2 ; q]+32[4 ; q][3 ; q]}{[4 ; q][2 ; q][3 ; q]}\right\}\right]$

2.11 q-analogue of Moultons Method

$y_{1}=y_{0}+h\left[f_{0}+\frac{\nabla_{q} f_{0}}{[2 ; q]}+\frac{1}{2}\left(\frac{1}{[3 ; q]}+\frac{1}{[2 ; q]}\right) \nabla_{q}^{2} f_{0}+\frac{1}{6} \nabla_{q}^{3} f_{0}\left(\frac{1}{[4 ; q]}+\frac{3}{[3 ; q]}+\frac{2}{[1 ; q]}\right)\right]$
where, Δ_{q}^{n} is K.Conrad[4] difference operator
$\Delta_{q}^{n}=\left\{\left(E-q^{n-1}\right) \ldots(E-q)(E-1)\right\}$
where $\mathrm{E}(\mathrm{f}(\mathrm{x}))=\mathrm{f}(\mathrm{x}+\mathrm{h})$

III. Conclusion

q -analogue of these methods provide an alternate method of solving classical problems where value of q determines the accuracy of result. q -analogue of different transformations can be used in boundary value problems of differential equations as well as in computer problems where parameters play important role .

References:

[1] G. Gasper and M. Rahman, Basic Hypergeometric Series, CambridgeUniversity Press, Cambridge, 1990.
[2] Thomas Ernst, A method for q-Calculus, Journal of Nonlinear Mathematical Physics, 2003
[3] Prashant Singh, Pramod Kumar Mishra and R.S.Pathak ,q-Iterative Methods, IOSR Journal of Mathematics (IOSR-JM), Volume 8, Issue 6 (Nov. - Dec. 2013), PP 01-06

