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Abstract: This paper investigates the application of the iterative Steepest Descent Method (SDM) to the 

solution of nonlinear two-point boundary-value problems for the optimal controls and trajectories of 

continuous-time linear-quadratic regulator problems. Numerical results show some improvement over the 

classical methods. 
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I. Introduction 

The variational approach to solving optimal control problems leads to a nonlinear two point boundary-

value problems that cannot be solved analytically to obtain the optimal control law, or even an optimal open 

loop control. In problems with plant dynamics and quadratic performance criteria (linear regulator and tracking 

systems), it has been found that, it is possible to obtain the optimal control law by numerically integrating a 

matrix differential equation of the Riccati type. 

 

II. Continuous-Time Linear-Quadratic Regulator Problems 
In this section we shall consider an important class of optimal control problems. The process to be 

controlled is described by the state equations: 

 ̇( )   ( ) ( )   ( ) ( )      (  )              2.1 

  ( )   ( ) ( )            2.2 

where  ( ) is an n-dimensional state vector,  ( ) is the m-dimensional plant control input vector and  ( ) is an 

r-dimensional output vector, with(       ); and  ( )  ( ) and  ( ) are                 

matrices, respectively. 

 According to [4], the plant described above is a continuous-time, linear dynamical system with the 

following properties: 

1. A time set {  } such that {  } = (-   )             , where    is the initial time and T is the final or 

terminal time. 

2. A set of states *  ( )+         called the state space, where    is the n-dimensional Euclidean vector 

space. 

3. A set of inputs or controls {  ( )}         called the input or control space, where    is the                   

m-dimensional Euclidean vector space. 

4. A function space   whose elements are bounded, measurable functions, which map   into U. 

5. A set of outputs  * +         called the output space. 

If the control  ( )is a given element of  , let     (          ( ))denote the solution of the system (2.1) 

starting from    at time    [that is ,  (  )     -  and generated by the control  ( ). Furthermore, let        

  ( )   ( )  ( ) be the corresponding output trajectory. Then, the optimal linear regulator problem is to 

determine the control  ( )  which, as we shall see below, minimizes a quadratic performance index. More 

specifically, an explicit solution of (2.1), given an initial state,   at    and         is as  follows: (see [3]) 

  ( )    (    )    ∫  (   ) 
 

  
( ) ( )         2.3 

where   (   )     (    ) is the state transition matrix associated with  the constant matrix  ( )  Similarly, the 

solution to (2.2), given an initial state,   and input, u(t) on ,    )  is (see [1]): 

  ( )    ( ) (    )    ∫  (   )
 

  
 ( )         2.4 

where  

 (   )   {
 ( ) (    ) ( )               
                                              

}       2.5 

is the impulse response matrix.  
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Therefore, and as mentioned above, the optimal linear regulator problem for a linear dynamic system entails the 

determination of the optimal control   ( )    ,    -  which minimizes the quadratic performance index:   

(see [1] and [4]) 

 (        ( ))   
 

 
  ( )  ( )   

 

 
∫ *  ( ) ( ) ( )     ( ) ( ) ( )+  
 

  
       2.6 

where H is a real symmetric positive semi definite (nonzero)     matrix; the “terminal state”   ( )    is 

unconstrained, and the terminal time, T,  may be either fixed prior or unspecified (    ). The superscript T 

denotes matrix transposition.  ( ) is a real symmetric     positive definite matrix. H and   ( ) are not both 

identically zero. Since    ( ) is positive definite, it possesses a unique positive definite square root,      ( )  
Similarly, the positive semi definiteness of  ( ) implies the existence of the unique positive semi definite 

square root      ( )  The notation H    will be used to indicate that, the matrix H is positive semi definite, 

that is,          Similarly, the notation H > 0 will be used to indicate that H is positive definite. In order to 

minimize the performance index J, it is necessary that J is finite, which means that it will become infinite if 

uncontrollable. The weighting matrices  ( ) and  ( ) are selected by the control system designer to place 

bounds on the trajectory and control, respectively, while the matrix H and the terminal penalty cost   ( )  ( ) 
are included in order to ensure that x(t) stays close to zero near the terminal time. From a design point of view, 

the control system designer may design the system so that the term     ( ) ( )  is chosen to penalize 

deviations of the regulated state  ( )from the desired equilibrium condition  ( )   , where as the term 

   ( ) ( ) discourages the use of excessively large control effort. 

  

III. The Steepest Descent Method (SDM) 
 Our discussion of the SDM (a gradient method) will begin by considering an analogous calculus 

problem. Let f  be a function of two independent variables    and  ; the value of the function f at the point   ,   

is denoted by   (     ). It is desired to find the point   
     

   where f assumes its minimum values,  (  
     

 )  
According to [6], if it is assumed that the variables   and    are not constrained by any boundaries,  a necessary 

condition for   
     

  to be a point where f  has a (relative) minimum is that, the differential of f vanish at  
     

 , 

that is, 

    (  
     

 )  ,
  

   
(  
     

 )-    ,
  

   
(  
     

 )-    

                             ,
  

  
(  )-              3.1 

  

  
 is called the gradient of f with respect to y.  Since   and    are independent, the components of    are 

independent and (3.1) implies, that is, 

 
  

  
(  )              3.2 

However, for  (  ) to be a relative minimum, it is necessary that the gradient of f  be zero at the point  .  
Equation (3.2) represents two algebraic equations that are generally nonlinear which, if the algebraic equations 

cannot be determined analytically for     one possible approach is to visualize the minimization as a problem in 

hill climbing. As in [6], it is opined that, the function f defines hills and valleys in the three-dimensional 

(       (     )) space. One way to find the bottom of a valley is to pick a trial point  ( ) and climb in a 

downward direction until a point    is reached where further movement in any direction increases the function 

value. To make the climbing procedure efficient, we chose to climb in the direction of steepest descent, thus 

ensuring that the shortest distance is traveled in reaching the bottom of the hill. The direction of the steepest 

descent at  ( ) is determined by evaluating the slope or gradient of the hill at the point ( ). It is evident that, the 

gradient vector is normal to the elevation contour and   ( ( )) is the unit vector in the gradient direction at the 

point  ( ( ))  that is, 

 ( ( ))   

  

  
( ( ))

‖
  

  
( ( ))‖

  

  

  
( ( ))

√0
  

   
( ( ))1

 
 0

  

   
( ( ))1

 
.       3.3 

Climbing in the direction of the vector    ( ( )), the change in y is given by 

     ( )    ( )      ( ( )),          3.4 

where     is the step length. With this selection for   , the differential, which is a linear approximation of the 

change in f , becomes  

  ( ( ))     0
  

  
( ( ))1

 

 ( ( )),         3.5 

or, by using (3.3), 
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   ( ( ))   
  {0

  

   
( ( ))1

 
 0

  

   
( ( ))1

 
}

‖
  

  
( ( ))‖

 

                 =    √0
  

   
( ( ))1

 

 0
  

   
( ( ))1

 

.       3.6 

Notice that this implies that 

   ( ( ))              3.7 

With the equality holding if and only if 
  

  
 is zero at ( ). This iterative procedure is continued by 

calculating  ( ( )), the unit vector in the gradient direction at ( ), and using the generalization of (3.4) to 

determine the next point,  ( )  

     (   )    ( )      ( ( ))         3.8 

It must be stated that, a suitable value for the step length,   must also be selected. If the value of   is too large, 

definitely, we will overshoot the mark and if   is too small, too much time is being spent trying to measure the 

slopes and not enough time is spent climbing. 

 

IV. Minimization of Functionalsby SDM 

Suppose that a nominal control history  ( )( )    [     ]  is known and used to solve the differential 

equations  

 ̇( )( )   ( ( )( )  ( )( )  )         4.1 

 ̇( )( )    
  

  
( ( )( )  ( )( )  ( )( )  )        4.2 

so that the nominal state-costate trajectory  ( )   ( ) satisfies the boundary conditions 

 ( )(  )                4.3 

 ( )(  )   
  

  
. ( )(  )/           4.4 

If this nominal control history also satisfies  
  

  
( ( )( )  ( )( )  ( )( )  )            [     ]        4.5  

Then  ( )( )  ( )( )      ( )( ) are extremal. Suppose that (4.5) is not satisfied; the variation of the 

augmented functional    on the nominal state-costate-control history is 

     ,
  

  
. ( )(  )/     

( )(  )-
   (  ) + ∫ *, ̇( )( )  

  

  
( ( )( )  ( )( )  ( )( )  )- 

  
  

  ( ) 

           +  ,
  

  
( ( )( )  ( )( )  ( )( )  )-   ( )  + [ ( ( )( )  ( )( )  )   ̇( )( )-   ( )+     4.6 

where   ( )   (   )( )   ( )( )   ( )   (   )( )   ( )( )      

  ( )   (   )( )    ( )( ). 
If (4.1) through (4.4) are satisfied, then  

     ∫ *,
  

  
( ( )( )  ( )( )  ( )( )  )- 

  
  

  ( )         4.7 

Recalling that     is the linear part of the increment         ( 
(   ))     ( 

( ))  and that if the norm 

of     ‖ (   )( )   ( )( )‖, is small, the sign of      will be determined by the sign of    .  Since our goal is 

to minimize     we wish to make      negative. If we select the change in u as  

   ( )   (   )( )   ( )( )     
  

  

( )
(t),      [     ]      4.8 

with      then  

       ∫ [
  

  

( )
( )]

 
  
  

[
  

  

( )
( )]              4.9 

Because the integrand is nonnegative for all    ,     -   The equality holds if and only if  

  

  

( )
( )                 ,     -          4.10 

Selecting     in this manner, with  ‖  ‖ sufficiently small, ensures that each value of the performance measure 

will be at least as small as the preceding value. Eventually, when     reaches a relative minimum, the vector   
  

  
 

will be zero throughout the time interval  ,     -   Subject to these, we have assumed that (4.1) to (4.4) are 

satisfied. On how this is achieved, we outline the algorithm as it would be executed using a digital computer. 
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V. The Steepest Descent Algorithm 
According to [6], the optimal control problem (2.1) and (2.6) may be solved with the SDM via the 

following steps: 

a. Select a discrete approximation to the nominal control history  ( )( )    [     ]  and store this in the 

memory of the digital computer. This is done by subdividing the interval [     ] into N subintervals (generally 

of equal duration) and considering the control  ( ) as being piecewise- constant during each of these 

subintervals; that is 

 ( )( )    ( )(  )    ,       )                     5.1 

Let the iteration index i be zero. 

b. Using the nominal control history  ( ), integrate the state equations from    to    with initial conditions 

 (  )      and store the resulting state trajectory  ( ) as a piecewise-constant vector function. 

c. Calculate  ( )(  )and substitute ( )(  ) from step (b) intoequation (4.4). Using this value of  ( )(  )as 

the initial condition and the piecewise-constant values of   ( ) stored in step (b), integrate the costate equations 

from    to   , evaluating 

  ( )( )

  
   [     ]   and store this function in piecewise-constant fashion.  

d. If   is a preselected positive constant such that  

‖
  ( )

  
‖                 5.2 

and 

‖
  ( )

  
‖
 

  ∫ [
  ( )

  
( )]

 
  
  

[
  ( )

  
( )]            5.3 

terminate the iterative procedure, and output the extremal state and control. If the stopping criterion (5.2) is not 

satisfied, then, generate a new piecewise-constant function given by 

 (   )(  )    
( )(  )    

  ( )

  
(  )                   5.4 

where   ( )( )    ( )(  )        ,       )                  5.5 

Then, replace  ( )(  ) by  (   )(  )              and return to step (b) above. 

The value of the terminating constant   will depend on the problem to be solved and the accuracy desired of the 

solution. The step length   is generally determined by some ad- hoc strategy. One possible strategy is to select a 

value   which attempts to affect a certain value of       
From (5.4) we observe that  

       ‖
  ( )

  
‖
 

              5.6 

To effect an approximate change of q percent in     select  as  

    
 

   
|  |

‖
  ( )

  
‖

             5.7 

An alternative strategy for selecting   is to use a single variable search. We choose an arbitrary starting value of 

   compute
  ( )

  
  and evaluate  (   ) using (4.5).  

In summary, we now present the SDM for solving continuous-time linear-quadratic regulator problems as 

follows in the next section. 

 

VI. Computational Results 
The following linear regulator problems were solved using the SDM algorithm described above. 

Problem (P1) 

What is the optimal trajectory and control for the system 

 ̇( ) =    ( )    ( )  0     ,  

 ( )           ( )        that minimizes the performance measure  

 J  =    ( )   
 

 
∫ *  ( )    ( )+
 

 
    

Problem (P2) 

Find the optimal trajectory and control for the system 

 ̇( ) =   ( )    ( )  0     ,  

 ( )           ( )        that minimizes the performance measure  

 J  =   ( )   ∫
 

 
  ( )
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Problem (P3) 

Minimize J  =   ( )   
 

 
∫ ,   ( )     ( )-
 

 
   

Subject to the constraint 

 ̇( ) =   ( )   ( )  0     ,   ( )          ( )        
 

Problem (P4) 

Minimize J  = 
 

 
  (    )   

 

 
∫ ,  ( )    ( )-
    

 
   

Subject to the constraint 

 ̇( ) =     ( )   ( )  0        ,  ( )           ( )      . 

 

Problem (P5)  

Minimize J  =     
 ( )   

 

 
∫ ,  

 ( )     
 ( )    ( )-

 

 
   

 ̇( )  .
        
    

/ .
  
  
/  .

 
 
/    ( )  .

    
  
/        ( )  .

 
 
/. The final time T = 10. 

The computational results of the above problems are presented in Tables 1 – 5.  

 

VII. Conclusion 
Computationally, the SDM was tested on a number of continuous-time linear-quadratic regulator 

problems with the results obtained in each case. Our numerical results for these problems are presented in the 

Tables 1–4. From the tables, it can be seen that (P1) readily converged at the seventh iteration when compared 

with the analytical result,                                           (P2) and (P3) converged at the 

forth and third iterations comparing them with the analytical results                      
                  and                                       respectively. While (P4) 

converged at the 18
th

 iteration to                    and      0.04615397268. In addition, the terminating 

criterion was fixed at‖
  ( )

  
‖         .The terminating criterion is relaxed so that we could substantiate usage 

of the SDM in solving this class of problem. Based on the results, it is obvious that, on determining the optimal 

controls and trajectories of continuous-time linear-quadratic regulator problems using iterative numerical 

techniques, the Steepest Descent Method is relevant and recommended for use. 
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       Table 1: Computational Results for Solution of Problem (P1) 

 

Iteration  

 

X(t) 

 

U(t) 

 

P(t) 

  

  
 

0 2 1.0 - - 

1 0.73304942 0.31356046 2.9321977 6.8643954 

2 0.23512918 0.94101067e-1 0.94051674 2.19459394 

3 0.71317093e-1 0.27637286e-1 0.28526837 0.66463781 

4 0.02105820 0.80269919e-2 0.84232826e-1 0.19610294 

5 0.61333273e-2 0.23176308e-2 0.02453330 0.57093611e-1 

6 0.17735222e-2 0.66704994e-3 0.70940889e-2 0.01650580 

7 0.51085812e-3 0.19165845e-3 0.20434325e-2 0.47539149e-2 
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Table 2: Computational Results for Solution of Problem (P2) 

 

Iteration  

 

X(t) 

 

U(t) 

 

P(t) 

  

  
 

0 4 1 - - 

1 2.10363832 0.58544671e-1 8.41455329 9.41455329 

2 0.81089258 -0.27166683 3.24357032 3.30211499 

3 0.12658452 -0.29513395 0.50633809 0.23467126 

4 -0.13999246 -0.20962363 -0.55996959 -0.85510354 

 
 

Table 3: Computational Results for Solution of Problem (P3) 

 
Iteration  

 
X(t) 

 
U(t) 

 
P(t) 

  

  
 

0 3 1 - - 

1 1.73575888 -0.48860711 6.94303553 14.8860711 

2 0.32969141 -0.70349952 1.31876564 2.14892418 

3 -0.32340982 -0.37442172 -1.29363928 -3.29077809 
 

  

 
       Table 4: Computational Results for Solution of Problem (P4) 

 
Iteration  

 
X(t) 

 
U(t) 

 
P(t) 

  

  
 

0 2 1 - - 

1 1.37360809 0.76263919 2.74721618 2.37360809 

2 0.94589972 0.5917853 1.89179944 1.70853891 

3 0.65356552 0.46725022 1.30713104 1.24535082 

4 0.45350237 0.37517496 0.90700475 0.92075259 

5 0.3163605 0.30602141 0.632721 0.69153546 

6 0.2221517 0.2532041 0.44430339 0.52817311 

7 0.15726037 0.21215766 0.31452073 0.41046447 

8 0.11240919 0.17970097 0.22481838 0.32456684 

9 0.81274513e-1 0.15360342 0.16254903 0.26097548 

10 0.59543933e-1 0.13228869 0.11908787 0.21314736 

11 0.44274784e-1 0.11463234 0.88549569e-1 0.17656347 

12 0.33457474e-1    0.99823359e-1 0.66914948e-1 0.14808981 

13 0.25718192e-1 0.08726920 0.51436383e-1 0.12554155 

14 0.2011651e-1 0.76530632e-1 0.4023302e-1 0.10738571 

15 0.16007561e-1 0.67276813e-1 0.32015123e-1 0.92538194e-1 

16 0.12948171e-1 0.59254314e-1 0.25896342e-1 0.80224984e-1 

17 0.10632915e-1 0.52265592e-1 0.21265829e-1 0.69887229e-1 

18 0.88505475e-2 0.46153978e-1 0.17701095e-1 0.61116139e-1 

 


