Properties of Coxeter Andreev's Tetrahedrons

Pranab Kalita ${ }^{1}$, Bichitra Kalita ${ }^{2}$
${ }^{1}$ Pranab Kalita, Department of Mathematics, Gauhati University, Guwahati-781014, Assam, India
${ }^{2}$ Department of Computer Applications (M.C.A), Assam Engineering College, Guwahati-781013, Assam, India

Abstract

Tetrahedron is the only 3-simplex convex polyhedron having four faces, and its shape has a wide application in science and technology. In this article, using graph theory and combinatorics, a study on a special type of tetrahedron called coxeter Andreev's tetrahedron has been facilitated and it has been found that there are exactly one, four and thirty coxeter Andreev's tetrahedrons having respectively two edges of order $n \geq 6$, one edge of order $n \geq 6$ and no edge of order $n \geq 6, n \in N$ upto symmetry. Keywords: Planar graph, Dihedral angles, Coxeter tetrahedron. MSC 2010 Codes: 51F15, 20F55, 51M09.

I. Introduction

A simplex (in plural, simplexes or simplices) is a generalization [1] of the notion of a triangle or tetrahedron to arbitrary dimensions. Specifically, a k-simplex is a k-dimensional polytope which is the convex hull of its $k+1$ vertices. Tetrahedron is the only 3 -simplex convex polyhedron having four faces. The angle between two faces of a polytope, measured from perpendiculars to the edge created by the intersection of the planes is called a dihedral angle. Roland K. W. Roeder's Theorem [11] provides the classification of compact hyperbolic tetrahedron by restricting to non-obtuse dihedral angles. A simple polytope P in n-dimensional space $X^{n}(X=E / S / H)$ is said to be coxeter, if the dihedral angles of P are of the form $\frac{\pi}{n}$ where, n is a positive integer ≥ 2. Vinberg proved in [24] that there are no compact hyperbolic coxeter polytopes in H^{n} when $n \geq 30$. Tumarkin classified the hyperbolic coxeter pyramids in terms of coxeter diagram and John Mcleod generalized it in his article [9]. D. A. Derevnin, at el [18] found the volume of symmetric tetrahedron.

The tetrahedron shape has a wide application [2] in engineering and computer science. Tetrahedral mess generation is one of such application. In chemistry, the tetrahedron shape is seen in nature in covalent bonds of molecules. For example, in a methane molecule $\left(\mathrm{CH}_{4}\right)$ or an ammonium ion $\left(\mathrm{NH}_{4}^{+}\right)$, four hydrogen atoms surround a central carbon or nitrogen atom with tetrahedral symmetry.

In this paper, a study on geometric shapes of a special type of tetrahedron called coxeter Andreev's tetrahedron has been carried out by the link of graph theory and combinatorics, and it has been found that there are exactly one, four and thirty coxeter Andreev's tetrahedrons having respectively two edges of order $n \geq 6$, one edge of order $n \geq 6$ and no edge of order $n \geq 6, n \in N$ upto symmetry.

The paper is organised as follows:
The section 1 includes introduction. The section 2 focuses some basic terminologies from graph theory and geometry. The section 3 presents new definitions and results. The conclusions are included in section 4.

II. Basic Terminologies

There is a strong link between graph theory and geometry. Graph theoretical concepts are used to understand the combinatorial structure of a polytope in geometry. Here we will mention some essential terminologies from graph theory and geometry.

Definition 2.1: A polytope is a geometric object with surfaces enclosed by edges that exist in any number of dimensions. A polytope in 2D, 3D and 4D is said to be polygon, polyhedron (plural polyhedra or polyhedrons) and polychoron respectively. The enclosed surfaces are said to be faces. The line of intersection of any two faces is said to be an edge and a point of intersection of three or more edges is called a vertex.

Definition 2.2: Let P be a polyhedron. The abstract graph of P is denoted by $G(P)$ and is defined as $G(P)=(V(P), E(P))$, where $V(P)$ is the set of vertices of P and two vertices $x, y \in V(P)$ are adjacent if and only if (x, y) is an edge of P.

Definition 2.3: A coxeter dihedral angle is a dihedral angle of the form $\frac{\pi}{n}$ where, n is a positive integer ≥ 2. A polytope with coxeter dihedral angles is called a coxeter polytope.

Remark 2.4: A non-obtuse angle α is such that $0<\alpha \leq \frac{\pi}{2}$. Coxeter dihedral angles are of the form $\frac{\pi}{n}$, n is a positive integer ≥ 2. Therefore coxeter dihedral angles are non-obtuse.

Definition 2.5: A prismatic k - circuit $\Gamma_{p}(k)$ is a k - circuit such that no two edges of C which correspond to edges traversed by $\Gamma_{p}(k)$ share a common vertex.

Definition 2.6: A cell complex C on S^{2} is called trivalent if each vertex is the intersection of three faces.

Definition 2.7: A 3-dimensional combinatorial polytope is a cell complex C on S^{2} that satisfies the following conditions:
(a) Each edge of C is the intersection of exactly two faces
(b) A nonempty intersection of two faces is either an edge or a vertex.
(c) Each face is enclosed by not less than 3 edges.

Any trivalent cell complex C on S^{2} that satisfies the above three conditions is said to be abstract polyhedron.

Definition 2.8: A 3D polytope is called simplicial if every face contains exactly 3 vertices. A 3D polytope is called a simple polytope if each vertex is the intersection of exactly 3 faces.

The 1 -skeleton of a polytope is the set of vertices and edges of the polytope. The skeleton of any convex polyhedron is a planar graph and the skeleton of any k-dimensional convex polytope is a k-connected graph.

Theorem 2.9: (Blind and Mani) If P is a convex polyhedron, then the graph $G(P)$ determines the entire combinatorial structure of P. In other words, if two simple polyhedral have isomorphic graphs, then their combinatorial polyhedral are also isomorphic.

Theorem 2.10: (Ernst Steinitz) A graph $G(P)$ is a graph of a 3-dimensional polytope P if and only if it is simple, planar and 3-connected.

Corollary 2.11: Every 3-connected planar graph can be represented in a plane such that all the edges are straight lines, all the bounded regions determined by these and the union of all the bounded regions are convex polygons.

III. New Definitions and Results

Definition 3.1: If the dihedral angle of an edge of a polytope is $\frac{\pi}{n}, n$ is a positive number, then n is said to be the order of the edge. We define a trivalent vertex to be of order (l, m, n) if the three edges at that vertex are of order l, m, n.

Definition 3.2: An Andreev's polytope is an abstract polytope which satisfies the following Andreev's conditions [16].
(1) Each dihedral angle α_{i} is non-obtuse $\left(0<\alpha_{i} \leq \frac{\pi}{2}\right)$.
(2) Whenever three distinct edges e_{i}, e_{j}, e_{k} meet at a vertex, then $\alpha_{i}+\alpha_{j}+\alpha_{k}>\pi$.
(3) Whenever $\Gamma_{p}(3)$ intersecting edges e_{i}, e_{j}, e_{k}, then $\alpha_{i}+\alpha_{j}+\alpha_{k}<\pi$.
(4) Whenever $\Gamma_{p}(4)$ intersecting edges $e_{i}, e_{j}, e_{k}, e_{l}$, then $\alpha_{i}+\alpha_{j}+\alpha_{k}+\alpha_{l}<2 \pi$.
(5) Whenever there is a four sided face bounded by edges $e_{1}, e_{2}, e_{3}, e_{4}$, enumerated successively, with edges $e_{12}, e_{23}, e_{34}, e_{41}$ entering the four vertices (edge $e_{i j}$ connects to the ends of e_{i} and e_{j}), then $\alpha_{1}+\alpha_{3}+\alpha_{12}+\alpha_{23}+\alpha_{34}+\alpha_{41}<3 \pi$, and $\alpha_{2}+\alpha_{4}+\alpha_{12}+\alpha_{23}+\alpha_{34}+\alpha_{41}<3 \pi$.

An Andreev's polytope with coxeter dihedral angles is called a coxeter Andreev's polytope. If the Andreev's polytope is not simplex, then it can be realized in Hyperbolic space [12, 16].

In our work, we pursue the coxeter Andreev's tetrahedron which is a simplex having no prismatic k - circuit $\Gamma_{p}(k)$, no four sided face, but its dihedral angles are non-obtuse.

Corollary 3.3: In a coxeter Andreev's tetrahedron T, the order of each vertex is one of the forms: $(2,2, n \geq 2),(2,3,3),(2,3,4),(2,3,5)$.

Proof: Suppose the order of one vertex of a coxeter Andreev's tetrahedron T is $\left(n_{i}, n_{j}, n_{k}\right)$. By second condition of Andreev's polytope:

$$
\frac{\pi}{n_{i}}+\frac{\pi}{n_{j}}+\frac{\pi}{n_{k}}>\pi \Rightarrow \frac{1}{n_{i}}+\frac{1}{n_{j}}+\frac{1}{n_{k}}>1
$$

So, upto permutations, the triples $\left(n_{i}, n_{j}, n_{k}\right)$ are respectively $(2,2, n \geq 2),(2,3,3),(2,3,4)$,
$(2,3,5)$.

Remarks 3.4:

* Suppose the dihedral angles at the edges $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}$ of a coxeter Andreev's tetrahedron are respectively $\frac{\pi}{n_{1}}, \frac{\pi}{n_{2}}, \frac{\pi}{n_{3}}, \frac{\pi}{n_{4}}, \frac{\pi}{n_{5}}, \frac{\pi}{n_{6}}$ as shown in figure 3.1.

Figure 3.1
Then we denote the coxeter Andreev's tetrahedron as $T=\left[n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right]$.

* We use the notation $\mathrm{T}_{\mathrm{kn}}-\mathrm{j}$ to denote the j th coxeter Andreev's tetrahedron with k number of edges of order $n \geq 6$.
* For our convenient, we split $(2,2, n \geq 2),(2,3,3),(2,3,4),(2,3,5)$ as:

$$
(2,2, n \geq 6),(2,2,2),(2,2,3),(2,2,4),(2,2,5),(2,3,3),(2,3,4),(2,3,5)
$$

Theorem 3.5: Let f_{i} and f_{j} be two distinct triangular faces of an abstract polyhedron T. Then T is a tetrahedron if and only if $f_{i} \cap f_{j} \neq \phi$.

Proof: If T is a tetrahedron then $f_{i} \cap f_{j}$ gives either an edge or a vertex, therefore, $f_{i} \cap f_{j} \neq \phi$. Conversely, suppose $f_{i} \cap f_{j} \neq \phi$. Since T is an abstract polyhedron, therefore T is trivalent, that is, the degree of each vertex is 3. Let $f_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}, f_{2}=\left\{v_{1}, v_{2}, v_{4}\right\}, f_{3}=\left\{v_{2}, v_{3}, v_{4}\right\}$ and $f_{4}=\left\{v_{1}, v_{3}, v_{4}\right\}$ as shown in the figure 3.2.

Figure 3.2
Now,

$$
\begin{aligned}
& f_{1} \cap f_{2}=\left\{e_{1}=\left[v_{1}, v_{2}\right]\right\}, f_{1} \cap f_{3}=\left\{e_{2}=\left[v_{2}, v_{3}\right]\right\}, f_{1} \cap f_{4}=\left\{e_{3}=\left[v_{1}, v_{3}\right]\right\} \\
& f_{2} \cap f_{3}=\left\{e_{5}=\left[v_{2}, v_{4}\right]\right\}, f_{2} \cap f_{4}=\left\{e_{4}=\left[v_{1}, v_{4}\right]\right\}, f_{3} \cap f_{4}=\left\{e_{6}=\left[v_{3}, v_{4}\right]\right\}
\end{aligned}
$$

And

$$
f_{1} \cap f_{2} \cap f_{4}=\left\{v_{1}\right\}, f_{1} \cap f_{2} \cap f_{3}=\left\{v_{2}\right\}, f_{1} \cap f_{3} \cap f_{4}=\left\{v_{3}\right\}, f_{2} \cap f_{3} \cap f_{4}=\left\{v_{4}\right\}
$$

Since, $f_{i} \cap f_{j}$ is an edge for any two faces f_{i}, f_{j} and $f_{i} \cap f_{j} \cap f_{k}$ is a vertex for any three faces f_{i}, f_{j}, f_{k}. Therefore P is a tetrahedron.
Corollary 3.6: In a coxeter Andreev's tetrahedron T, the number of edges of order 2 at one vertex is at least 1 and at most 3 .
Proof: Clear from corollary 3.3.
Corollary 3.7: In a coxeter Andreev's tetrahedron T, the edges of order $n \geq 6$ are disjoint.
Proof: Suppose the edges of order $n \geq 6$ are not disjoint. Then, there exists at least two adjacent edges e_{i}, e_{j} at one vertex v with orders $n_{i}, n_{j} \geq 6$. Let e_{k} be another edge at vertex v. By corollary 3.6 , the order of e_{k} is 2 which is adjacent to the edges e_{i}, e_{j}.

Figure 3.3
Using second condition of Andreev's polytope:

$$
\begin{equation*}
\frac{\pi}{n_{i}}+\frac{\pi}{n_{j}}+\frac{\pi}{2}>\pi \tag{1}
\end{equation*}
$$

Since $n_{i}, n_{j} \geq 6$, therefore,

$$
\frac{\pi}{n_{i}}+\frac{\pi}{n_{j}}+\frac{\pi}{2} \leq \frac{\pi}{6}+\frac{\pi}{6}+\frac{\pi}{2}=\frac{5 \pi}{6}<\pi
$$

This is contradiction to (1). Therefore, the edges of order $n \geq 6$ are disjoint.
Corollary 3.8: In a coxeter Andreev's tetrahedron T, if an edge at one vertex is of order $n \geq 6$, then the other two edges must be of order 2 .

Proof: Let e_{i}, e_{j}, e_{k} be three edges at one vertex v with orders $n_{i} \geq 6, n_{j}, n_{k}$ respectively.

Figure 3.4
Using second condition of Andreev's polytope:

$$
\frac{\pi}{n_{i}}+\frac{\pi}{n_{j}}+\frac{\pi}{n_{k}}>\pi
$$

Since $n_{i} \geq 6$, therefore:

$$
\begin{equation*}
\pi<\frac{\pi}{n_{i}}+\frac{\pi}{n_{j}}+\frac{\pi}{n_{k}} \Rightarrow \pi<\frac{\pi}{6}+\frac{\pi}{n_{j}}+\frac{\pi}{n_{k}} \Rightarrow \frac{5 \pi}{6}<\frac{\pi}{n_{j}}+\frac{\pi}{n_{k}} \tag{2}
\end{equation*}
$$

Since, n_{j}, n_{k} are positive integers, therefore the inequality (3) has only the solutions $n_{j}=n_{k}=2$.

Corollary 3.9: In a coxeter Andreev's tetrahedron T, there exists at most one edge at one vertex of order $n \geq 6$.

Proof: Suppose, there exists at least two edges at one vertex whose orders are $n \geq 6$. But by corollary 3.7, the edges of order $n \geq 6$ are disjoint. Hence, our assumption is false and therefore, there exists at most one edge at one vertex of order $n \geq 6$.

Corollary 3.10: In a coxeter Andreev's tetrahedron T, there are at most two edges are of order $n \geq 6$.
Proof: In a tetrahedron T, there are exactly two disjoint edges upto symmetry. By corollary 3.7, the edges of order $n \geq 6$ are disjoint. Therefore there are at most two edges of order $n \geq 6$.

Theorem 3.11: In a tetrahedron T, if any three vertices are of same order, then the fourth vertex is also of same order.

Proof: Suppose any three vertices v_{1}, v_{2} and v_{3} of a tetrahedron T are of same order $\left(n_{1}, n_{2}, n_{3}\right)$ up to symmetry. It is well known that, in a tetrahedron, any two vertices are adjacent to each other. Therefore, v_{1}, v_{2} and v_{3} are adjacent to v_{4} and suppose, they are adjacent to v_{4} by the edges of order n_{2}, n_{3} and n_{1} respectively as shown in the figure 3.5 .

Figure 3.5
Then, the order of v_{4} is $\left(n_{1}, n_{2}, n_{3}\right)$ up to symmetry.

Corollary 3.12: In a tetrahedron T, the number of same order vertices can be either 2 or 4 .
Proof: It is obvious that two vertices in a tetrahedron T can have same order. Again by Theorem 3.11, if any three vertices are of same order, then the fourth vertex is also of same order. That is, there cannot be exactly three vertices of same order. Therefore, in a tetrahedron T, the number of same order vertices can be either 2 or 4.

Theorem 3.13: In a coxeter Andreev's tetrahedron T, if exactly two edges are of order $n \geq 6$, then there exists exactly 1 such T upto symmetry.

Proof: Let T be a coxeter Andreev's tetrahedron. Also let T has exactly two edges (disjoint, by corollary 3.7) e_{1} and e_{6} are of orders $n_{1}, n_{2} \geq 6$. To avoid symmetry, let us assume $n_{1} \leq n_{2}$. Now, since any one of the remaining edges $e_{2}, e_{3}, e_{4}, e_{5}$ is adjacent to one of the edges e_{1} and e_{6}. By corollary 3.8 , if an edge at one vertex is of order $n \geq 6$, then the other two edges must be of order 2 . Therefore, we have only the choice that the remaining edges $e_{2}, e_{3}, e_{4}, e_{5}$ are of order 2 . Hence, there is exactly 1 such tetrahedron T upto symmetry with two edges of orders $n \geq 6$.

Figure 3.6
Note: For different values of n_{1} and n_{2}, there will be infinite numbers of tetrahedrons, but we treat these as single category (coxeter Andreev's tetrahedron with exactly two edges are of order $n \geq 6$).
Theorem 3.14: In a coxeter Andreev's tetrahedron T, if exactly one edge is of order $n \geq 6$, then there exists exactly 4 such T upto symmetry.
Proof: Let T be a coxeter Andreev's tetrahedron. Also let T has exactly one edge e_{1} is of order $n \geq 6$. By corollary 3.8 , if an edge at one vertex is of order $n \geq 6$, then the other two edges must be of order 2 . Therefore, each of the edges $e_{2}, e_{3}, e_{4}, e_{5}$ must be of order 2 .

Figure 3.7

Now, the choices of the orders of the remaining edge e_{6} are $m=2,3,4,5$. Therefore, there are exactly 4 such T upto symmetry with exactly one edge of order $n \geq 6$.

Figure 3.8
Note: For different values of n, there will be infinite numbers of tetrahedrons, but we treat these as single category (coxeter Andreev's tetrahedron with exactly one edge is of order $n \geq 6$).

Theorem 3.15: In a coxeter Andreev's tetrahedron T. If T has no edge of order $n \geq 6$, then there are exactly 10 such T upto symmetry with at least one vertex is of order $(2,2,2)$.

Proof: Let T be a coxeter Andreev's tetrahedron. Also let T has no edge of order $n \geq 6$ and with at least one vertex is of order $(2,2,2)$. By corollary 3.12 , the number of same order vertices can be either 2 or 4 .
Therefore, there will be three cases: Case 1: all (four) the vertices are of order (2,2,2), Case 2: two vertices are of order $(2,2,2)$ and Case 3: one vertex is of order $(2,2,2)$.
Case 1: All the vertices of T are of order $(2,2,2)$.
In this case, we have the following figure:

Figure 3.9
Therefore, there is exactly $1 T$ of this type up to symmetry with all the vertices of order $(2,2,2)$.
Case 2: Two vertices are of order $(2,2,2)$.
Suppose, the two vertices v_{1} and v_{2} are of order $(2,2,2)$ as shown in the figure:

Figure 3.10
Then, the choices of the order of the edge e_{6} will be $m=2,3,4,5$. For $m=2$, it falls in case 1 . For $m=3,4,5$, there are exactly 3 such T upto symmetry.

Figure 3.11
Case 3: One vertex v_{1} is of order $(2,2,2)$.
In this case, we can order at most one edge out of e_{2}, e_{5}, e_{6} with 2 because, if we order two or more (all) edges of e_{2}, e_{5}, e_{6} by 2 , then it falls in case 2 or case 1 respectively.

Case 3.1: At most one e_{2} is of order 2 .
Suppose e_{2}, e_{5}, e_{6} are ordered by $2, m_{1}$, and m_{2} respectively. The possible choices for $m_{1}, m_{2}=3,4,5$.

Figure 3.12
To avoid symmetry, assume $m_{1} \leq m_{2}$. Therefore $m_{1}=3$ and $m_{2}=3,4,5$ upto symmetry. Hence, there are exactly 3 such T upto symmetry.

Case 3.2: No one of the edges e_{2}, e_{5}, e_{6} is ordered by 2.
Suppose, e_{2}, e_{5}, e_{6} are ordered by m_{1}, m_{2} and m_{3} respectively. The possible choices for $m_{1}, m_{2}, m_{3}=3,4,5$.

Figure 3.14
To avoid symmetry, let us assume $m_{1} \leq m_{2} \leq m_{3}$. Therefore, the orders of $\left(e_{2}, e_{5}, e_{6}\right)$ are $(3,3,3),(3,3,4),(3,3,5)$ upto symmetry. Hence, there are exactly 3 such T upto symmetry.

Figure 3.15

Theorem 3.16: In a coxeter Andreev's tetrahedron T. If T has no edge of order $n \geq 6$, then there are exactly 8 such T upto symmetry with at least one vertex is of order $(2,2,3)$ and no vertex is of order $(2,2,2)$.

Proof: Let T be a coxeter Andreev's tetrahedron. Also let T has no edge of order $n \geq 6$, at least one vertex is of order $(2,2,3)$ and no vertex is of order $(2,2,2)$. By corollary 3.12 , the number of same order vertices can
be either 2 or 4 . Therefore, there will be three cases: Case 1: all (four) the vertices are of order $(2,2,3)$, Case 2: two vertices are of order $(2,2,3)$ and Case 3 : one vertex is of order $(2,2,3)$.

Case 1: All the vertices of T are of order $(2,2,3)$.
In this case, we have the following figure:

Figure 3.16
Therefore, there are exactly 1 such T upto symmetry.
Case 2: Two vertices are of order $(2,2,3)$.
In this case, we can have the two vertices of order $(2,2,3)$ with either adjacent edges of order 3 or disjoint edges of order 3 or they share a common edge of order 3 .

Case 2.1: Two vertices of order $(2,2,3)$ with adjacent edges of order 3 .
Suppose, the vertices v_{1} and v_{2} are ordered by $(2,2,3)$, where the edges e_{2} and e_{3} of order 3 are adjacent. Then, the only possibility for e_{6} is of order 2 and then, the order of v_{4} becomes $(2,2,2)$, which cannot be taken by assumption.

Case 2.2: Two vertices of order $(2,2,3)$ with disjoint edges of order 3
Suppose, the vertices v_{1} and v_{2} are ordered by $(2,2,3)$, where the edges e_{3} and e_{5} of order 3 are disjoint. Then, the possibilities of orders for e_{6} are $m=2,3,4,5$.

Figure 3.17

For $m=2$, it falls in case 1 . For $m=3,4,5$, the number of T of this type is exactly 3 up to symmetry.

Figure 3.18
Case 2.3: Two vertices of order $(2,2,3)$ with common edge of order 3 .
Suppose the vertices v_{1} and v_{3} are ordered by $(2,2,3)$ sharing the common edge e_{3} of order 3 . Then, the possibilities of orders for e_{5} are $m=2,3,4,5$.

Figure 3.19
For $m=2$, the order of v_{2} becomes $(2,2,2)$, which cannot be taken by assumption.
For $m=3$, it falls in case 1 .
For $m=4,5$, there are exactly $2 T$ of this type upto symmetry

Figure 3.20
Case 3: One vertex v_{1} is of order $(2,2,3)$.
By corollary 3.6, the number of edges of order 2 at one vertex is at least 1 and at most 3 . Therefore, at v_{3}, there exists at least one edge e_{2} of order 2 upto symmetry. If e_{6} is also of order 2 , then it falls in case 2 . Suppose e_{5} and e_{6} are ordered by m_{1} and m_{2} respectively.

Figure 3.21
Then, the possibilities for $m_{1}=2,3,4,5$. If $m_{1}=2$, the order of v_{2} becomes $(2,2,2)$, which cannot be taken by assumption. For $m_{1}=3$, it falls in case 2 . Therefore, $m_{1}=4,5$.
Now, the possibilities for $m_{2}=3,4,5$. For $m_{2}=3$, we have exactly 2 such T upto symmetry.

$\mathrm{T}_{\mathrm{On}}-17=[2,2,3,2,4,3]$

$$
\mathrm{T}_{0 \mathrm{n}}-18=[2,2,3,2,5,3]
$$

Figure 3.22

For $m_{2}=4,5$, the order of the vertex v_{4} becomes $(2,4,4),(2,4,5),(2,5,5)$ respectively, which are not possible by corollary 3.3.
Theorem 3.17: In a coxeter Andreev's tetrahedron T. If T has no edge of order $n \geq 6$, then there are exactly 4 such T upto symmetry with at least one vertex is of order $(2,2,4)$ and no vertex is of order of the forms $(2,2,2),(2,2,3)$.

Proof: Let T be a coxeter Andreev's tetrahedron. Also let T has no edge of order $n \geq 6$, at least one vertex is of order $(2,2,4)$ and no vertex is of order $(2,2,2),(2,2,3)$. By corollary 3.12 , the number of same order vertices can be either 2 or 4 . Therefore, there will be three cases: Case 1: all (four) the vertices are of order $(2,2,4)$, Case 2: two vertices are of order $(2,2,4)$ and Case 3 : one vertex is of order $(2,2,4)$.

Case 1: All the vertices of T are of order $(2,2,4)$.
In this case, there are exactly $1 T$ of this type upto symmetry.

$$
\mathrm{T}_{0 \mathrm{n}}-19=[2,4,2,4,2,2]
$$

Figure 3.23
Case 2: Two vertices are of order $(2,2,4)$.
If the two vertices of order $(2,2,4)$ are with adjacent edges of order 4 , then the order of the vertex at which the two edges of order 4 are adjacent becomes $(n \geq 2,4,4)$. This is not possible as it is not in coxeter Andreev's tetrahedron. Therefore, the two vertices of order $(2,2,4)$ cannot be with adjacent edges of order 4 and hence, we can have the two vertices of order $(2,2,4)$ with either disjoint edges of order 4 or common edge of order 4.

Case 2.1: Two vertices of order $(2,2,4)$ with disjoint edges of order 4.
Suppose the vertices v_{1} and v_{2} are of order $(2,2,4)$ with disjoint edges e_{3} and e_{5} of order 4 .

Then, the possibilities of orders for e_{6} are $m=2,3,4,5$. For $m=2$, it falls in case 1 . For $m=3$, we have exactly $1 T$ of this type upto symmetry.

Figure 3.25

For $m=4,5$, the order of v_{3} becomes $(2,4,4),(2,4,5)$ respectively which are not in coxeter Andreev's tetrahedron.

Case 2.2: Two vertices of order $(2,2,4)$ with common edge of order 4.
Suppose the vertices v_{1} and v_{3} are of order $(2,2,4)$ with common edge e_{3} of order 4 .

Figure 3.26

Then the possibilities of order for e_{5} are $m=2,3,4,5$. For $m=2,3$, the order of v_{2} becomes $(2,2,2),(2,2,3)$ respectively which are not taken by assumption. For $m=4$, the order of v_{2} becomes $(2,2,4)$ and it falls in case 1 . For $m=5$, we have exactly $1 T$ of this type upto symmetry.

Figure 3.27
Case 3: One vertex v_{1} is of order $(2,2,4)$.
By corollary 3.6, the number of edges of order 2 at one vertex is at least 1 and at most 3 . Therefore, at v_{3}, there exists at least one edge e_{2} of order 2 upto symmetry. If e_{6} is also of order 2 , then it falls in case 2 .

Suppose e_{5} and e_{6} are ordered by m_{1} and m_{2} respectively.

Figure 3.28
Then the possibilities for $m_{1}=2,3,4,5$. If $m_{1}=2,3$, the order of v_{2} becomes $(2,2,2)$ and $(2,2,3)$ respectively, which are not taken by assumption. For $m_{1}=4$, it falls in case 2 . Therefore $m_{1}=5$. Again, the possibilities for $m_{2}=2,3,4,5$. For $m_{2}=2$, it falls in case 2 . Therefore $m_{2}=3$ and hence there are exactly 1 CHC tetrahedron T upto symmetry.

Figure 3.29
For $m_{2}=4,5$, the order of the vertex v_{4} becomes $(2,4,5),(2,5,5)$ respectively, which are not possible by corollary 3.3.
Theorem 3.18: In a coxeter Andreev's tetrahedron T. If T has no edge of order $n \geq 6$, then there are exactly 2 such T upto symmetry with at least one vertex is of order $(2,2,5)$ and no vertex is of order of the forms $(2,2,2),(2,2,3),(2,2,4)$.
Proof: Let T be a coxeter Andreev's tetrahedron. Also let T has no edge of order $n \geq 6$, at least one vertex is of order $(2,2,5)$ and no vertex is of order $(2,2,2),(2,2,3),(2,2,4)$. By corollary 3.12 , the number of same order vertices can be either 2 or 4 . Therefore, there will be three cases: Case 1: all (four) the vertices are of order $(2,2,5)$, Case 2 : two vertices are of order $(2,2,5)$ and Case 3 : one vertex is of order $(2,2,5)$.
Case 1: All the vertices of T are of order $(2,2,5)$.
In this case, we have exactly $1 T$ of this type upto symmetry.

Figure 3.30
Case 2: Two vertices are of order $(2,2,5)$.
If the two vertices of order $(2,2,5)$ are with adjacent edges of order 5 , then the order of the vertex at which the two edges of order 5 are adjacent becomes $(n \geq 2,5,5)$. This is not possible by corollary 3.3. Therefore, the two vertices of order $(2,2,5)$ cannot be with adjacent edges of order 5 and hence, we can have the two vertices of order $(2,2,5)$ with either disjoint edges of order 5 or common edge of order 5 .

Case 2.1: Two vertices of order $(2,2,5)$ with disjoint edges of order 5 .
Suppose the vertices v_{1} and v_{2} are of order $(2,2,5)$ with disjoint edges e_{3} and e_{5} of order 5 . Then, the possibilities of orders for e_{6} are $m=2,3,4,5$.

Figure 3.31
For $m=2$, it falls in case 1 . For $m=3$, we have exactly $1 T$ of this type upto symmetry.

Figure 3.32

For $m=4,5$, the order of v_{3} becomes $(2,4,5),(2,5,5)$ respectively which are not possible by corollary 3.3.

Case 2.2: Two vertices of order $(2,2,5)$ with common edge of order 5 .
Suppose the vertices v_{1} and v_{3} are of order $(2,2,5)$ with common edge e_{3} of order 5 .

Figure 3.33
Then the possibilities of order for e_{5} are $m=2,3,4,5$. For $m=2,3,4$, the order of v_{2} becomes $(2,2,2),(2,2,3),(2,2,4)$ respectively which are not taken by assumption. For $m=5$, it falls in case 1 .

Case 3: One vertex v_{1} is of order $(2,2,5)$.

By corollary 3.6, the number of edges of order 2 at one vertex is at least 1 and at most 3 . Therefore, at v_{3}, there exists at least one edge e_{2} of order 2 upto symmetry. If e_{6} is also of order 2 , then it falls in case 2 . Suppose e_{5} and e_{6} are ordered by m_{1} and m_{2} respectively.

Figure 3.34
Then the possibilities for $m_{1}=2,3,4,5$. For $m_{1}=2,3,4$, the order of v_{2} becomes $(2,2,2),(2,2,3),(2,2,4)$ respectively, which are not taken by assumption. For $m_{1}=5$, it falls in case 2 . Therefore, there is no tetrahedron of this type.

Theorem 3.19: In a coxeter Andreev's tetrahedron T. If T has no edge of order $n \geq 6$, then there are exactly 3 such T upto symmetry with at least one vertex is of order $(2,3,3)$ and no vertex is of order of the forms $(2,2,2),(2,2,3),(2,2,4),(2,2,5)$.

Proof: Let T be a coxeter Andreev's tetrahedron. Also let T has no edge of order $n \geq 6$, at least one vertex is of order $(2,3,3)$ and no vertex is of order $(2,2,2),(2,2,3),(2,2,4),(2,2,5)$. By corollary 3.12 , the number of same order vertices can be either 2 or 4 . Therefore, there will be three cases: Case 1: all (four) the vertices are of order $(2,3,3)$, Case 2: two vertices are of order $(2,3,3)$ and Case 3 : one vertex is of order $(2,3,3)$.
Case 1: All the vertices of T are of order $(2,3,3)$.
In this case, there are exactly one T of this type upto symmetry.

Figure 3.35
Case 2: Two vertices are of order $(2,3,3)$.
If the two vertices of order $(2,3,3)$ are with adjacent edges of order 2 , then the order of the vertex at which the two edges of order 2 are adjacent becomes $(2,2, n \geq 2)$. This is not taken by assumption. Therefore, the two
vertices of order $(2,3,3)$ cannot be with adjacent edges of order 2 and hence, we can have the two vertices of order $(2,3,3)$ with either disjoint edges of order 2 or common edge of order 2

Case 2.1: Two vertices of order $(2,3,3)$ with disjoint edges of order 2 .
Suppose the vertices v_{1} and v_{3} are of order $(2,3,3)$ with disjoint edges e_{1} and e_{6} of order 2 . Then, the possibilities of orders for e_{5} are $m=2,3,4,5$

Figure 3.36
For $m=2$, the order of v_{2} becomes $(2,2,2)$ which is not taken by assumption. For $m=3$, it falls in case 1 . For $m=4,5$, there are exactly $2 T$ of this type upto symmetry.

$\mathrm{T}_{\mathrm{on}}-26=[2,3,3,3,4,2]$

$\mathrm{T}_{\mathrm{on}}-27=[2,3,3,3,5,2]$

Figure 3.37
Case 2.2: Two vertices of order $(2,3,3)$ with common edge of order 2 .
Suppose the vertices v_{1} and v_{2} are of order $(2,3,3)$ with common edge e_{1} of order 2 .

Figure 3.38

Then the possibilities of order for e_{6} are $m=2,3,4,5$. For $m=2$, it falls in case 1 . For $m=3,4,5$, the order of v_{3} becomes $(3,3,3),(3,3,4),(3,3,5)$ respectively, which are not possible by corollary 3.3. Hence there is no tetrahedron of this type.

Case 3: One vertex v_{1} is of order $(2,3,3)$.
By corollary 3.6, the number of edges of order 2 at one vertex is at least 1 and at most 3 . Also, the edges of order 2 must be disjoint as we do not have the vertices of the forms: $(2,2,2),(2,2,3),(2,2,4),(2,2,5)$. Therefore at one vertex, there are exactly one edge of order 2 . If v_{1} is of order $(2,3,3)$ with e_{1} is of order 2 , then e_{6} must be of order 2. Suppose, the order of the edges e_{2} and e_{5} are m_{1} and m_{2} respectively.

Figure 3.39

To avoid symmetry, assume $m_{1} \leq m_{2}$. Therefore $m_{1}=3$ and $m_{2}=4,5$ upto symmetry. But these falls in case 2 . Hence, there is no such T of this type.

Theorem 3.20: In a coxeter Andreev's tetrahedron T. If T has no edge of order $n \geq 6$, then there are exactly 2 such T upto symmetry with at least one vertex is of order $(2,3,4)$ and no vertex is of order of the forms $(2,2,2),(2,2,3),(2,2,4),(2,2,5)$, $(2,3,3)$.

Proof: Let T be a coxeter Andreev's tetrahedron. Also let T has no edge of order $n \geq 6$, at least one vertex is of order $(2,3,4)$ and no vertex is of order $(2,2,2),(2,2,3),(2,2,4),(2,2,5)$,
$(2,3,3)$. By corollary 3.12 , the number of same order vertices can be either 2 or 4 . Therefore, there will be three cases: Case 1: all (four) the vertices are of order $(2,3,4)$, Case 2 : two vertices are of order $(2,3,4)$ and Case 3: one vertex is of order $(2,3,4)$.

Case 1: All the vertices of T are of order $(2,3,4)$.
In this case, we have exactly $1 T$ of this type upto symmetry.

Figure 3.40
Case 2: Two vertices are of order $(2,3,4)$.
If the two vertices of order $(2,3,4)$ are with adjacent edges of order 2 , then the order of the vertex at which the two edges of order 2 are adjacent becomes $(2,2, n \geq 2)$. This is not taken by assumption. Therefore, the two vertices of order $(2,3,4)$ cannot be with adjacent edges of order 2 and hence, we can have the two vertices of order $(2,3,4)$ with either disjoint edges of order 2 or common edge of order 2 .

Case 2.1: Two vertices of order $(2,3,4)$ with disjoint edges of order 2.
Suppose the vertices v_{1} and v_{3} are of order $(2,3,4)$ with disjoint edges e_{1} and e_{6} of order 2 .

Figure 3.41

Then the possibilities of orders for e_{5} are $m=2,3,4,5$. For $m=2,3$, the order of v_{2} becomes $(2,2,3),(2,3,3)$ respectively, which are not taken by assumption. For $m=4$, it falls in case 1 . For $m=5$, there are exactly 1 such T of this type upto symmetry.

Figure 3.42
Case 2.2: Two vertices of order $(2,3,4)$ with common edge of order 2 .
Suppose the vertices v_{1} and v_{2} are of order $(2,3,4)$ with common edge e_{1} of order 2 .

Figure 3.43
In the first figure, we do not have any choice for m. In the second figure, we have $m=2$ and it falls in case 1 .
Case 3: One vertex v_{1} is of order $(2,3,4)$.
By corollary 3.6, the number of edges of order 2 at one vertex is at least 1 and at most 3 . Also, the edges of order 2 must be disjoint as we do not have the vertices of the forms: $(2,2,2),(2,2,3),(2,2,4),(2,2,5)$. Therefore at one vertex, there are exactly one edge of order 2 . If v_{1} is of order $(2,3,4)$ with e_{1} is of order 2 , then e_{6} must be of order 2 . Suppose, the order of the edges e_{2} and e_{5} are m_{1} and m_{2} respectively.

Figure 3.44
To avoid symmetry, assume $m_{1} \leq m_{2}$. Therefore, $m_{1}=3$ and $m_{2}=3,4,5$ upto symmetry. For $m_{1}=3$ and $m_{2}=3$, the order of v_{2} becomes $(2,3,3)$, which cannot be taken by assumption and $m_{1}=3, m_{2}=4$ as well as $m_{1}=3, m_{2}=5$ lead to case 2 . Hence, there is no such T of this type.

Theorem 3.21: In a coxeter Andreev's tetrahedron T. If T has no edge of order $n \geq 6$, then there are exactly 1 such T upto symmetry with at least one vertex is of order $(2,3,5)$ and no vertex is of order of the forms $(2,2,2),(2,2,3),(2,2,4),(2,2,5)$, $(2,3,3),(2,3,4)$.

Proof: Let T be a coxeter Andreev's tetrahedron T. Also let T has no edge of order $n \geq 6$, at least one vertex is of order $(2,3,5)$ and no vertex is of order $(2,2,2),(2,2,3),(2,2,4)$,
$(2,2,5),(2,3,3),(2,3,4)$. By corollary 3.12 , the number of same order vertices can be either 2 or 4 . Therefore, there will be three cases: Case 1: all (four) the vertices are of order $(2,3,5)$, Case 2 : two vertices are of order $(2,3,5)$ and Case 3 : one vertex is of order $(2,3,5)$.

Case 1: All the vertices of T are of order $(2,3,5)$.
In this case, we have exactly $1 T$ upto symmetry.

Figure 3.45
Case 2: Two vertices are of order $(2,3,5)$.
If the two vertices of order $(2,3,5)$ are with adjacent edges of order 2 , then the order of the vertex at which the two edges of order 2 are adjacent becomes $(2,2, n \geq 2)$. This cannot be taken by assumption. Therefore, the two vertices of order $(2,3,5)$ cannot be with adjacent edges of order 2 and hence, we can have the two vertices of order $(2,3,5)$ with either disjoint edges of order 2 or common edge of order 2

Case 2.1: Two vertices of order $(2,3,5)$ with disjoint edges of order 2.
Suppose the vertices v_{1} and v_{3} are of order $(2,3,5)$ with disjoint edges e_{1} and e_{6} of order 2 .

Figure 3.46
Then the possibilities of orders for e_{5} are $m=2,3,4,5$. For $m=2,3,4$, the order of v_{2} becomes $(2,2,3),(2,3,3),(2,3,4)$ respectively, which cannot be taken by assumption. For $m=5$, it falls in case 1 . Hence, there is no such T of this type.

Case 2.2: Two vertices of order $(2,3,5)$ with common edge of order 2 .

Suppose the vertices v_{1} and v_{2} are of order $(2,3,5)$ with common edge e_{1} of order 2 upto symmetry.

Figure 3.47
Then the only possibility of order for e_{6} is $m=2$ and this falls in case 1 . Hence, there is no such T of this type.
Case 3: One vertex v_{1} is of order $(2,3,5)$.
By corollary 3.6, the number of edges of order 2 at one vertex is at least 1 and at most 3. Also, the edges of order 2 must be disjoint as we do not have the vertices of the forms: $(2,2,2),(2,2,3),(2,2,4),(2,2,5)$. Therefore at one vertex, there are exactly one edge of order 2 . If v_{1} is of order $(2,3,5)$ with e_{1} is of order 2 , then e_{6} must be of order 2. Suppose, the order of the edges e_{2} and e_{5} are m_{1} and m_{2} respectively.

Figure 3.48
To avoid symmetry, assume $m_{1} \leq m_{2}$. Therefore, $m_{1}=3$ and $m_{2}=3,4,5$ upto symmetry. For $m_{1}=3$, $m_{2}=3$ and for $m_{1}=3, m_{2}=4$, the order of v_{2} becomes $(2,3,3)$ and $(2,3,4)$ respectively, which cannot be taken by assumption. For $m_{1}=3, m_{2}=5$, it falls in case 1 . Hence, there is no such T of this type.

From theorem 3.15 to theorem 3.21, the total number of coxeter Andreev's tetrahedrons with no edge of order $n \geq 6$ upto symmetry is $10+8+4+2+3+2+1=30$.

IV. Conclusions

In this article, it has been found that there are exactly one, four and thirty coxeter Andreev's tetrahedrons having respectively two edges of order $n \geq 6$, one edge of order $n \geq 6$ and no edge of order $n \geq 6, n \in N$ upto symmetry. These tetrahedrons may not be realized in Hyperbolic space. We can extend our research to find the coxeter Andreev's tetrahedrons which can be realized in Hyperbolic space. This research can also be extended to other compact as well as non-compact polytopes in spaces of different dimensions.

References

[1] en.wikipedia.org/wiki/simplex, access in October, 2013
[2] en.wikipedia.org/wiki/tetrahedron\#Applications access in October, 2013.
[3] John G. Ratcliffe, Foundations of Hyperbolic Manifolds, ©1994 by Springer-Verlag, New York, Inc.
[4] Chris Godsil, Gordon Royle, Algebraic Graph Theory, Springer International Edition.
[5] Gil Kalai, Polytope Skeletons and Paths, ©1997 by CRC Press LLC.
[6] Dipankar Mondal, Introduction to Reflection Groups, April 26, 2013, Triangle Group (Course Project).
[7] http://en.wikipedia.org/wiki/Projective_linear_group, access in October, 2013
[8] http://mathworld.wolfram.com/Hyperbolic Tetrahedron.html, access in October, 2013
[9] J. Mcleod, Hyperbolic Coxeter Pyramids, Advances in Pure Mathematics, Scientific Research, 2013, 3, 78-82
[10] Wikipedia, the free encyclopedia, access in October, 2013
[11] Roland K. W. Roeder, Compact hyperbolic tetrahedra with non-obtuse dihedralangles, August 10, 2013, arxiv.org/pdf/math/0601148.
[12] Aleksandr Kolpakov, On extremal properties of hyperbolic coxeter polytopes and their reflection groups, Thesis No: 1766, epubli.de, 2012.
[13] Anna Felikson, Pavel Tumaarkin, Coxeter polytopes with a unique pair of non intersecting facets, Journal of Combinatorial Theory, Series A 116 (2009) 875-902.
[14] Pavel Tumarkin, Compact Hyperbolic Coxeter n-polytopes with $n+3$ facets, The Electronic Journal of Combinatorics 14 (2007).
[15] R.K.W. Roeder, Constructing hyperbolic polyhedral using Newton's method, Experiment. Math. 16, 463-492 (2007)
[16] Roland K.W. Roeder, John H. Hubbard and William D. Dunbar, Andreev's Theorem on Hyperbolic Polyhedra, Ann. Inst. Fourier, Grenoble 57, 3 (2007), 825-882.
[17] D. Cooper, D. Long and M. Thistlethwaite, Computing varieties of representations of hyperbolic 3-manifolds into $\operatorname{SL}(4, R)$, Experiment. Math. 15, 291-305 (2006)
[18] D. A. Derevnin, A. D. Mednykh and M. G. Pashkevich, On the volume of symmetric tetrahedron, Siberian Mathematical Journal, Vol. 45, No. 5, pp. 840-848, 2004
[19] Yunhi Cho and Hyuk Kim. On the volume formula for hyperbolic tetrahedral. Discrete Comput. Geom., 22 (3): 347-366, 1999.
[20] Tomaz Pisanski, Milan Randic, Bridges between Geometry and Graph Theory, ISSN 1318-4865, Preprint Series, Vol. 36 (1998), 595.
[21] Raquel diaz, Non-convexity of the space of dihedral angles of hyperbolic polyhedra. C. R. Acad. Sci. Paris Ser. I Math., 325 (9):993-998, 1997.
[22] E. B. Vinberg, Geometry II, Encyclopedia of Maths, Sc. 29. Springer 1993.
[23] E. B. Vinberg, Hyperbolic Reflection Groups, Uspekhi Mat. Nauk 40, 29-66 (1985)
[24] E. B. Vinberg, The absence of crystallographic groups of reflections in Lobachevskij spaces of large dimensions, Trans. Moscow Math. Soc. 47 (1985), 75-112.
[25] E. M. Andreev, On Convex Polyhedral of Finite Volume in Lobacevskii Space, Math. USSR Sbornik 10, 413-440 (1970).
[26] E. M. Andreev, On Convex Polyhedral of Finite Volume in Lobacevskii Space, Math. USSR Sbornik 12, 255-259-259 (1970).
[27] P. Erdos, On Some Applications of Graph Theory to Geometry to Professor H. S. M. Coxeter on his Sixtieth Birthday, 968-971, Mathematical Institute, Hungarian Academy of Sciences, Budapest, Hungary.

