Fuzzy L –**Filters**

M.Mullai

(Department of Mathematics, Sri Raaja Raajan College of Engg. and Tech., S.India)

Abstract: In this paper, fuzzy L-filter and level fuzzy L-filter are defined. Also some elementary properties and theorems are derived. Some examples are provided. *Key Words*-Fuzzy L-ideals, level fuzzy L-ideals, fuzzy L-filters and level fuzzy L-filters.

I. Introduction

The concept of fuzzy sets was introduced in 1965 by L.A.Zadeh [1]. In that, the fuzzy group was introduced by Rosenfield [2]. Yuan and Wu [3] applied the concepts of fuzzy sets in lattice theory. The idea of fuzzy sublattice was introduced by Ajmal [4]. In paper [5], the definition of fuzzy L-ideal, level fuzzy L-ideal, union and intersection of fuzzy L-ideals, theorems, propositions and examples are given. In this present paper, fuzzy L-filters and level fuzzy L-filters are introduced. Some characterization theorems and propositions are derived. Some more results related to this topic are also established.

II. Preliminaries

Fuzzy L-ideal, level fuzzy L-ideal are defined and examples are given. **Definition: 2.1**

A fuzzy subset $\mu: L \rightarrow [0,1]$ of L is called a fuzzy L-ideal of L if $\forall x, y \in L$,

(i) $\mu(x \lor y) \ge \min \{ \mu(x), \mu(y) \}$

 $(ii) \qquad \mu(\ x \wedge y \) \geq max \ \{\ \mu(x), \ \mu(y)\}.$

Example: 2.2

Let $L = \{ 0,a,b,1 \}$. Let $\mu: L \rightarrow [0,1]$ is a fuzzy set in L defined by $\mu(0) = 0.9$, $\mu(a) = 0.5$, $\mu(b) = 0.5$, $\mu(c) = 0.5$, $\mu(1) = 0.5$.

figure.1

Then μ is a fuzzy L-ideal of L.

Definition: 2.3

Let μ be any fuzzy L-ideal of a lattice L and let $t \in [0,1]$. Then $\mu_t = \{ x \in L / \mu(x) \ge t \}$ is called level fuzzy L-ideal of μ .

Example : 2.4

Let $L = \{ 0,a,b,1 \}$. Let $\mu: L \rightarrow [0,1]$ is a fuzzy set in L defined by $\mu(0) = 0.7$, $\mu(a) = 0.5$, $\mu(b) = 0.5$, $\mu(c) = 0.5$, $\mu(1) = 0.5$.

figure.2

Then μ is a fuzzy L-ideal of L. In this example, let t = 0.5. Then $\mu_t = \mu_{0.5} = \{ a, b, c, 1 \}$.

www.iosrjournals.org

III. Some Theorems On Fuzzy L-Filters

In this section, some properties of fuzzy L-filters are discussed and some theorems on fuzzy L-filters are derived.

Definition: 3.1

A fuzzy subset $\mu: L \rightarrow [0,1]$ of L is called a fuzzy L-filter of L if $\forall x, y \in L$,

- (i) $\mu(x \lor y) \le \max \{ \mu(x), \mu(y) \}$
- (ii) $\mu(x \wedge y) \leq \min \{ \mu(x), \mu(y) \}.$

Example: 3.2

Let $L = \{ 0,a,b,1 \}$. Let $\mu: L \rightarrow [0,1]$ is a fuzzy set in L defined by $\mu(0) = 0.3$, $\mu(a) = 0.3$, $\mu(b) = 0.3$, $\mu(c) = 0.3$, $\mu(1) = 0.7$.

figure.3

Then μ is a fuzzy L-filter of L.

Definition: 3.3

Let μ be any fuzzy L-filter of a lattice L and let $t \in [0,1]$. Then $\mu_t = \{ x \in L / \mu(x) \le t \}$ is called level fuzzy L-filter of μ .

Example : 3.4

Let $L = \{ 0,a,b,1 \}$. Let $\mu: L \rightarrow [0,1]$ is a fuzzy set in L defined by $\mu(0) = 0.3$, $\mu(a) = 0.3$, $\mu(b) = 0.3$, $\mu(c) = 0.3$, $\mu(1) = 0.5$.

figure.4

Then μ is a fuzzy L-filter of L. In this example, let t = 0.3. Then $\mu_t = \mu_{0.3} = \{ 0, a, b, c \}$.

Definition: 3.5

Let μ_1 and μ_2 be any two fuzzy L-filters of a lattice L. μ_1 is said to be contained in μ_2 if $\mu_1(x) \le \mu_2(x)$, $\forall x \in L$ and is denoted by $\mu_1 \subseteq \mu_2$.

Definition: 3.6

Let μ be any fuzzy L-filter of a lattice L, $t \in [0,1]$ and $t \ge \mu(0)$. The fuzzy L-filter μ_t is called a level fuzzy L-filter of μ .

Proposition: 3.7

If μ is any fuzzy L-filter of a lattice L, then the following statement is true: $\mu(1) \ge \mu(x) \ge \mu(0), \forall x \in L.$ **Proof:** Let μ be any fuzzy L-filter of a lattice L. (i) Let $0, 1 \in L$. Then by definition $\mu(1)=\mu(1\lor 0) \le \max\{\mu(0), \mu(1)\}$ $\mu(0) =\mu(1\land 0) \le \min\{\mu(0), \mu(1)\}$ $\Rightarrow \mu(1) \ge \mu(0) ------(1)$ $\mu(x) = \mu(0\lor x) \le \max\{\mu(0), \mu(x)\}$

www.iosrjournals.org

$$\begin{split} \mu(0) &= \mu(0 \land x) \le \min\{\mu(0), \mu(x)\} \\ \Rightarrow \mu(x) \ge \mu(0) -----(2) \\ \mu(1) &= \mu(1 \lor x) \le \max\{\mu(1), \mu(x)\} \\ \mu(x) &= \mu(1 \land x) \le \min\{\mu(1), \mu(x)\} \\ \Rightarrow \mu(1) \ge \mu(x) -----(3) \\ Therefore (1), (2) \& (3), we have \\ \mu(1) \ge \mu(x) \ge \mu(0), \text{for all } x \in L. \end{split}$$

Remark: 3.8

Every fuzzy L-filter is a fuzzy sublattice. But the converse need not be true. The following example prove this. Let L = { 0, a,b,c,1 }. Let $\mu:L \rightarrow [0,1]$ is a fuzzy set in L defined by $\mu(0) = 0.6$, $\mu(a) = 0.5$, $\mu(b) = 0.4$, $\mu(c) = 0.7$, $\mu(1) = 0.8$.

figure.5

Then μ is a fuzzy sublattice but not a fuzzy L-filter of L.

Lemma: 3.9

Let μ be a fuzzy L-filter of a lattice L and t, $s \in Im\mu$. Then $\mu_t = \mu_s$ iff t =s. **Proof:** If t = s, then clearly $\mu_t = \mu_s$. Conversely, let $\mu_t = \mu_s$. Since t $\in Im\mu$, $\exists x \in L$ such that $\mu(x) = t$. $\Rightarrow x \in \mu_s$. Hence t = $\mu(x) \leq s$ ------(1) Similarly we can prove s $\leq t$ -----(2) Therefore from (1) and (2), we get t = s.

Theorem: 3.10

Two level fuzzy L-filters μ_s and μ_t (with s<t) of a fuzzy L-filter μ of a lattice L are equal if and only if there is no x in L such that $s \ge \mu(x) > t$. **Proof:**

Let μ_s and μ_t be two level L-filters of a fuzzy L-filter of a lattice L, where s>t. Assume that μ_s and μ_t are equal.

To prove: There is no x in L such that $s \ge \mu(x) > t$. On the contrary, assume that $s \ge \mu(x) > t$, for some x in L. $\Rightarrow \mu(x) \le s \text{ and } \mu(x) > t.$ $\Rightarrow x \in \mu_s \text{ and } x \notin \mu_t$. $\Rightarrow \mu_s \neq \mu_t$. This is a contradiction to our assumption. Hence there is no x in L such that $s \ge \mu(x) > t$. Conversely, assume that there is no x in L such that $s \ge \mu(x) > t$. -----(1) $\mu_s = \{ x \in L / \mu(x) \le s \}$ and $\mu_t = \{ x \in L / \mu(x) \le t \} \text{ and } s > t .$ Then $\mu_s \subseteq \mu_t$ -----(2) It is enough to show that $\mu_t \subseteq \mu_s$. Let $x \in \mu_s$. Then $\mu(x) \leq s$. $\Rightarrow \mu(x) \le t$, by (1) $\Rightarrow x \in \mu_{s.}$ $\Rightarrow \mu_t \subseteq \mu_s ------(3)$

From (2) and (3), $\mu_s = \mu_t$. Hence the two level L-filters are equal.

Theorem: 3.11

Let L be a lattice. If μ : L \rightarrow [0,1] is a fuzzy L-filter, then the level subset μ_t , t \in Im μ is a level fuzzy L-filter of the lattice L.

PROOF:

Let x, $y \in \mu_t$. Then $\mu(x) \le t$; $\mu(y) \le t$. $\mu(x \lor y) \le \max \{\mu(x), \mu(y)\} \le t$ Therefore $x \lor y \in \mu_t$. Let $x \in \mu_t$ & $y \in L$, $t \in Im\mu$. Then $\mu(x) \le t$. $\mu(x \land y) \le \min\{ \mu(x), \mu(y)\}$,since μ is a fuzzy filter. $\le t$ Hence $x \land y \in \mu_t$. Therefore μ_t is a level fuzzy L-filter of L.

Theorem: 3.12

A fuzzy subset μ of a lattice L is a fuzzy L-filter of L iff the level subset μ_t , $t \in \text{Im } \mu$ is a level fuzzy L-filter of L.

Proof:

Let μ be a fuzzy subset of a lattice L. Assume that μ is a fuzzy L-filter of L. Then μ_t , $t \in Im \mu$ is a level fuzzy L-filter of L by theorem 3.11. Conversely, assume that the level subsets μ_t , $t \in Im\mu$ is level fuzzy L-filter of L. To prove: μ is a fuzzy L-filter of L. It is enough to prove that

(i) $\mu(x \lor y) \le \max \{ \mu(x), \mu(y) \}$

(ii) $\mu(x \wedge y) \leq \min \{ \mu(x), \mu(y) \}$

Now x, $y \in \mu_t \Longrightarrow \mu(x) \le t$ and $\mu(y) \le t$ Also min { $\mu(x), \mu(y)$ } $\le t$ $x \lor y \in \mu_t \Longrightarrow \mu(x \lor y) \le t$ $\Longrightarrow \mu(x \lor y) \le \max\{ \mu(x), \mu(y) \}$ Similarly, $x \land y \in \mu_t \Longrightarrow \mu(x \land y) \le t$ $\Longrightarrow \mu(x \land y) \le \min\{ \mu(x), \mu(y) \}$ Hence μ is a fuzzy L-filter.

IV. Conclusion

In this paper, the definition with examples, properties and some theorems in fuzzy L-filters are given. Using these, various results can be developed under the topic fuzzy L-filter. These results may be used in various applications related to this field.

V. Acknowledgements

The author expresses her gratitude to the learned referee for his valuable suggestions.

References

- [1] L.A.Zadeh, FuzzySets, Inform. Control 8(1965)338-353.
- [2] Rosenfield, Fuzzy Groups, *Math.Anal.Appl.35*(1971)512-517.
 [3] B.Yuan and W.Wu, Fuzzy ideals on a distributive lattice, *Fuzzysets and systems 35*(1990)231-240.
- [3] B. Yuan and W. Wu, Fuzzy ideals on a distributive lattice, *Fuz*
- [4] Ajmal.N, Fuzzy lattices, *Inform. Sci.* 79(1994) 271-291.
- [5] M.Mullai and B.Chellappa, Fuzzy L-ideal, *ActaCiencia Indica, Vol. XXXV M, No. 2, 525* (2009).
- [6] Gratzer.G, *General Lattice Theory*, (Academic Press Inc.1978).
- [7] Nanda,FuzzyLattice,Bull.Cal.Math.Soc.81 (1989).

^[8] Rajesh Kumar, Fuzzy Algebra, University of Delhi Publication Division(1993).