I.

A Strong Form of Lindelof Spaces

*C.Duraisamy **R.Vennila

^{*}Department of Mathematics, Kongu Engineering College, Perundurai, Erode-638052 ^{**}Department of Mathematics, SriGuru Institute of Technology, Varathaiyangar Palayam, Coimbatore-641110

Abstract: In this paper, we introduce and investigate a new class of set called $\omega - \lambda$ -open set which is weaker than both ω -open and λ -open set. Moreover, we obtain the characterization of λ -Lindelof spaces. **Keywords:** Topological spaces, λ -open sets, λ -Lindelof spaces. 2000 Mathematics Subject Classification: 54C05, 54C08, 54C10.

Introduction And Preliminaries

Throughout this paper (X, τ) and (Y, σ) stand for topological spaces with no separation axioms assumed, unless otherwise stated. Maki [3] introduced the notion of Λ -sets in topological spaces. A Λ -set is a set A which is equal to its kernel, that is, to the intersection of all open supersets of A. Arenas et.al. [1] Introduced and investigated the notion of λ -closed sets by involving Λ -sets and closed sets. Let A be a subset of a topological space (X,τ) . The closure and the interior of a set A is denoted by Cl(A), Int(A) respectively. A subset A of a topological space (X,τ) is said to be λ -closed [1] if $A = B \cap C$, where B is a Λ -set and C is a closed set of X. The complement of λ -closed set is called λ -open [1]. A point $x \in X$ in a topological space (X,τ) is said to be λ -cluster point of A [2] if for every λ -open set U of X containing x, $A \cap U \neq \phi$. The set of all λ -cluster points of A is called the λ -closure of A and is denoted by $Cl_{\lambda}(A)$ [2]. A point $x \in X$ is said to be the λ -interior point of A if there exists a λ -open set U of X containing x such that $U \subset A$. The set of all λ -interior points of A is said to be the λ -interior of A and is denoted by $Int_{\lambda}(A)$. A set A is λ -closed (resp. λ -open) if and only if $Cl_{\lambda}(A) = A$ (resp. $Int_{\lambda}(A) = A$) [2].

The family of all λ -open (resp. λ -closed) sets of X is denoted by $\lambda O(X)$ (resp. $\lambda C(X)$). The family of all λ -open (resp. λ -closed) sets of a space (X, τ) containing the point $x \in X$ is denoted by $\lambda O(X, x)$ (resp. $\lambda C(X, x)$).

II. $\omega - \lambda$ -OPEN SETS

Definition 2.1: A subset A of a topological space X is said to be $\omega - \lambda$ -open if for every $x \in A$, there exists a λ -open subset $U_x \in X$ containing x such that $U_x - A$ is countable. The complement of an $\omega - \lambda$ -open subset is said to be $\omega - \lambda$ -closed.

Proposition 2.2: Every λ -open set is ω - λ -open. Converse not true.

Corollary 2.3: Every open set is $\omega - \lambda$ -open, but not conversely.

Proof: Follows from the fact that every open set is λ -open.

Lemma 2.4: For a subset of a topological space, both ω -openness and λ -openness imply ω - λ -openness.

Proof: (i) Assume A is ω -open then, for each $x \in A$, there is an open set containing x such that $U_x - A$ is countable. Since every open set is λ -open, A is $\omega - \lambda$ -open. (ii) Let A be $\omega - \lambda$ -open. For each $x \in A$, there exists a λ -open set $U_x = A$ such that $x \in U_x$ and $U_x - A = \phi$. Therefore, A is $\omega - \lambda$ -open.

Example 2.5: Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, X\}$, then $\{b\}$ is ω -open but not λ -open (since X is a countable set).

Example 2.6: Let X = R with the usual topology. Let A = Q be the set of all rational numbers. Then A is λ -open but it is not ω -open.

Lemma 2.7: A subset A of a topological space X is $\omega - \lambda$ -open if and only if for every $x \in A$, there exists a λ -open subset U containing x and a countable subset C such that $U - C \subset A$.

www.iosrjournals.org

Proof: Let A be $\omega - \lambda$ -open and $x \in A$, then there exists a λ -open subset U_x containing x such that $n(U_x - A)$ is countable. Let $C = U_x - A = U_x \cap (X - A)$. Then $U_x - C \subset A$. Conversely, let $x \in A$. Then there exists a λ -open subset U_x containing x and a countable subset C such that $U_x - C \subset A$. Thus, $U_x - A \subset C$ and $U_x - A$ is countable.

Theorem 2.8: Let X be a topological space and $C \subset X$ If C is λ -closed, then $C \subset K \cup B$ for some λ -closed subset K and a countable subset B.

Proof: If C is λ -closed, then X - C is λ -open and hence for every $x \in X - C$, there exists a λ -open set U containing x and a countable set B such that $U - B \subset X - C$. Thus $C \subset X - (U - B) = X - (U \cap (X - B)) = X - (U \cup B)$. Let K = X - U. Then K is λ -closed such that $C \subset K \cup B$.

Corollary 2.9 The intersection of an $\omega - \lambda$ -open set with an open set is $\omega - \lambda$ -open.

Question: Does there exist an example for the intersection of $\omega - \lambda$ -open sets is $\omega - \lambda$ -open?

Proposition 2.10: The union of any family of $\omega - \lambda$ -open sets is $\omega - \lambda$ -open.

Proof: If $\{A_{\alpha} : \alpha \in \Lambda\}$ is a collection of $\omega - \lambda$ -open subsets of X, then for every $x \in \bigcup_{\alpha \in \Lambda} A_{\alpha}, x \in A_{\gamma}$ for

some $\gamma \in \Lambda$. Hence there exists a λ -open subset U of X containing x such that $U - A_{\gamma}$ is countable. Now $U - \bigcup_{\alpha \in \Lambda} A_{\alpha} \subset U - A_{\gamma}$ and thus $U - \bigcup_{\alpha \in \Lambda} A_{\alpha}$ is countable. Therefore, $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is $\omega - \lambda$ -open.

Definition 2.11: The union of all $\omega - \lambda$ -open sets contained in $A \subset X$ is called the $\omega - \lambda$ -interior of A, and is denoted by ω - Int_{λ}(A). The intersection of all $\omega - \lambda$ -closed sets of X containing A is called the $\omega - \lambda$ -closure of A, and is denoted by ω - Cl_{λ}(A).

The proof of the following Theorems follows from the Definitions hence they are omitted.

Theorem 2.12: Let A and B be subsets of (X, τ) . Then the following properties hold:

- (i) $\omega \text{Int}_{\lambda}(A)$ is the largest $\omega \lambda$ -open subset of X contained in A
- (ii) A is $\omega \lambda$ -open if and only if $A = \omega Int_{\lambda}(A)$
- (iii) $\omega \operatorname{Int}_{\lambda}(\omega \operatorname{Int}_{\lambda}(A)) = \omega \operatorname{Int}_{\lambda}(A)$
- (iv) If $A \subset B$, then $\omega Int_{\lambda}(A) \subset \omega Int_{\lambda}(B)$
- (v) $\omega \operatorname{Int}_{\lambda}(A) \cup \omega \operatorname{Int}_{\lambda}(B) \subset \omega \operatorname{Int}_{\lambda}(A \cup B)$
- (vi) $\omega \operatorname{Int}_{\lambda}(A \cap B) \subset \omega \operatorname{Int}_{\lambda}(A) \cap \omega \operatorname{Int}_{\lambda}(B)$.

Theorem 2.13: Let A and B be subsets of (X, τ) . Then the following properties hold:

- (i) $\omega \operatorname{Cl}_{\lambda}(A)$ is the smallest $\omega \lambda$ -closed subset of X contained in A;
- (ii) A is $\omega \lambda$ -closed if and only if $A = \omega Cl_{\lambda}(A)$;
- (iii) $\omega \operatorname{Cl}_{\lambda}(\omega \operatorname{Cl}_{\lambda}(A)) = \omega \operatorname{Cl}_{\lambda}(A);$
- (iv) If $A \subset B$, then $\omega Cl_{\lambda}(A) \subset \omega Cl_{\lambda}(B)$;
- (v) $\omega \operatorname{Cl}_{\lambda}(A \cup B) = \omega \operatorname{Cl}_{\lambda}(A) \cup \omega \operatorname{Cl}_{\lambda}(B);$
- (vi) ω -Cl_{λ}(A \cap B) $\subset \omega$ -Cl_{λ}(A) $\cap \omega$ -Cl_{λ}(B).

Theorem 2.14: Let (X,τ) be a topological space and $A \subset X$. A point $x \in \omega - Cl_{\lambda}(A)$ if and only if $U \cap A \neq \phi$ for every $U \in \omega \lambda O(X, x)$.

Theorem 2.15: Let (X, τ) be a topological space and $A \subset X$. Then the following properties hold:

- (i) $\omega \operatorname{Int}_{\lambda}(X A) = X (\omega \operatorname{Cl}_{\lambda}(A))$
- (ii) $\omega \operatorname{Cl}_{\lambda}(X A) = X (\omega \operatorname{Int}_{\lambda}(A))$

Theorem 2.16: If each nonempty $\omega - \lambda$ -open set of a topological space X is uncountable, then $\omega - \operatorname{Int}_{\lambda}(A) \subset \operatorname{Int}_{\lambda}(A)$ for each open set A of X.

Proof: Clearly $\omega - Cl_{\lambda}(A) \subset Cl_{\lambda}(A)$. On the other hand, let $x \in Cl_{\lambda}(A)$ and B be an $\omega - \lambda$ -open subset containing x. Then by Lemma 2.7, there exists a λ -open set V containing x and a countable set C such that $V - C \subset B$. Thus $(V - C) \cap A \subset B \cap A$ and so $(V \cap A) - C \subset B \cap A$.

Since $x \in V$ and $x \in Cl_{\lambda}(A)$, $V \cap A \neq \phi$ and $V \cap A$ is λ -open since V is λ -open and A is open. By the hypothesis each nonempty λ -open set of a topological space X is uncountable and so is $(V \cap A) - C$. Thus $B \cap A$ is uncountable. Therefore, $B \cap A \neq \phi$ which means that $x \in \omega - Cl_{\lambda}(A)$.

Corollary 2.17: If each nonempty λ -open set of a topological space X is uncountable, then ω - Int_{λ}(A) = Int_{λ}(A) for each closed set A of X.

Definition 2.18: A function $f : X \to Y$ is said to be quasi λ -open if the image of each λ -open set in X is open in Y.

Theorem 2.19: If $f : X \to Y$ is quasi λ -open, then the image of an ω - λ -open set of X is ω -open in Y.

Proof: Let $f: X \to Y$ be quasi λ -open and W an $\omega - \lambda$ -open subset of X. Let $y \in f(W)$, there exists $x \in W$ such that f(x) = y. Since W is $\omega - \lambda$ -open, there exists a λ -open set U such that $x \in U$ and is countable. Since f is quasi λ -open, f(U) is open in Y such that $y = f(x) \in f(U)$ and $f(U) - f(W) \subset f(U - W) = f(C)$ is countable. Therefore, f(W) is λ -open in Y.

Definition 2.20: A collection $\{U_{\alpha} : \alpha \in \Delta\}$ of λ -open sets in a topological space X is called a λ -open cover of a subset B of X if $B \subset \{U_{\alpha} : \alpha \in \Delta\}$ holds.

Definition 2.21: A topological space X is said to be λ - Lindelof if every λ -open cover of X has a countable subcover.

A subset A of a topological space X is said to be λ - Lindelof relative to X if every cover of A by λ -open sets of X has a countable subcover.

Theorem 2.22: Every λ - Lindelolf space is Lindelof.

Theorem 2.23: If X is a topological space such that every λ -open subset is λ -Lindelof relative to X, then every subset is λ -Lindelof relative to X.

Proof: Let B be an arbitrary subset of X and let $\{U_{\alpha} : \alpha \in \Delta\}$ be λ -open cover of B. Then the family $\{U_{\alpha} : \alpha \in \Delta\}$ is a λ -open cover of the λ -open set $\cup \{U_{\alpha} : \alpha \in \Delta\}$. Hence by hypothesis there is a countable subfamily $\{U_{\alpha_i} : \alpha_i \in N\}$ which covers $\cup \{U_{\alpha} : \alpha \in \Delta\}$. This subfamily is also a cover of the set B.

Theorem 2.24: Every λ -closed subset of a λ - Lindelof space X is λ -Lindelof relative to X.

Proof: Let A be a λ -closed subset of X and \tilde{U} be a cover of A by λ -open subsets in X. Then $\tilde{U}^* = \tilde{U} \cup \{X - A\}$ is a λ -open cover of X. Since X is λ -Lindelof, \tilde{U}^* has a countable subcover \tilde{U}^{**} for X. Now $\tilde{U}^{**} - \{X - A\}$ is a countable subcover of \tilde{U} for A, so A is λ -Lindelof relative to X.

Theorem 2.25: For any topological space X, the following properties are equivalent:

(i) X is λ -Lindelof.

(ii) Every λ -open cover of X has a countable subcover.

Proof: (i) \Rightarrow (ii) : Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any cover of X by $\omega - \lambda$ -open sets of X. For each $x \in X$, there exists $\alpha(x) \in \Delta$ such that $x \in U_{\alpha(x)}$. Since $U_{\alpha}(x)$ is $\omega - \lambda$ -open, there exists a λ -open set $V_{\alpha(x)}$ such that $x \in V_{\alpha(x)}$ and $U_{\alpha(x)} - V_{\alpha(x)}$ is countable. The family $\{V_{\alpha(x)} : x \in X\}$ is a λ -open cover of X and X is λ -Lindelof. There exists a countable subset, say $\alpha_1(x), \alpha_2(x), \dots, \alpha_n(x), \dots$ such that

$$\mathbf{X} = \bigcup \{ \mathbf{V}_{\alpha(x_i)} : i \in \mathbf{N} \} \qquad \text{Now,} \qquad \text{we} \qquad \text{have} \qquad \mathbf{X} = \bigcup_{i \in \mathbf{N}} \{ (\mathbf{V}_{\alpha(x_i)} - \mathbf{U}_{\alpha(x_i)}) \cup \mathbf{U}_{\alpha(x_i)} \}$$

 $= \left(\bigcup_{i \in N} \mathbf{V}_{\alpha(x_i)} - \mathbf{U}_{\alpha(x_i)}\right) \cup \left(\bigcup_{i \in N} \mathbf{U}_{\alpha(x_i)}\right) \quad \text{. For each } \alpha(x_i), \ \mathbf{V}_{\alpha(x_i)} - \mathbf{U}_{\alpha(x_i)} \text{ is a countable set and there exists a countable subset } \Delta_{\alpha(x_i) \text{ of } \Delta} \text{ such that } \mathbf{V}_{\alpha(x_i)} - \mathbf{U}_{\alpha(x_i)} \subset \cup \left\{\mathbf{U}_{\alpha} : \alpha \in \Delta_{\alpha(x_i)}\right\}. \text{ Therefore, we can also be a contract of the exist of the$

have $\mathbf{X} \subset \bigcup \{ \mathbf{U}_{\alpha} : \alpha \in \Delta_{\alpha(x)} \}$.

(ii) \Rightarrow (i): Since every λ -open is ω - λ -open, the proof is obvious.

III. $\omega - \lambda$ -CONTINUOUS FUNCTION

Definition 3.1: A function $f: (X, \tau) \to (Y, \sigma)$ is said to be $\omega - \lambda$ -continuous if the inverse image of every open subset of Y is $\omega - \lambda$ -open in X.

It is clear that every λ -continuous function is ω - λ -continuous but not conversely.

Example 3.2: Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{a, c\}, X\}$. Clearly the identity function $f : (X, \tau) \to (X, \sigma)$ is $\omega - \lambda$ -continuous but not λ -continuous.

Theorem 3.3: For a function $f : (X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent:

- (i) f is $\omega \lambda$ -continuous;
- (ii) For each point x in X and each open set F of Y such that $f(x) \in F$, there is an $\omega \lambda$ -open set A in X such that $x \in A$, $f(A) \subset F$;
- (iii) The inverse image of each closed set of Y is ω λ -closed in X;
- (iv) For each subset A of X, $f(\omega \operatorname{Cl}_{\lambda}(A)) \subset \operatorname{Cl}(f(A))$;
- (v) For each subset B of Y, $\omega \operatorname{Cl}_{2}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}_{2}(B))$;
- (vi) For each subset C of Y, $f^{-1}(\operatorname{Int}(C)) \subset \omega \operatorname{Int}_{\lambda}(f^{-1}(C));$

Proof: (i) \Rightarrow (ii) : Let $x \in X$ and F be an open set of Y containing f(x) .By (i), $f^{-1}(F)$ is $\omega - \lambda$ open in X. Let $A = f^{-1}(F)$. Then $x \in A$ and $f(A) \subset F$.

(ii) \Rightarrow (i): Let F be an open in Y and let $x \in f^{-1}(F)$. Then $f(x) \in F$. By (ii), there is an $\omega - \lambda$ -open set U_x in X such that $x \in U_x$ and $f(U_x) \subset F$. Then $x \in U_x \subset f^{-1}(F)$. Hence $f^{-1}(F)$ is $\omega - \lambda$ -open in X.

(i) \Leftrightarrow (iii) : This follows due to the fact that for any subset B of Y, $f^{-1}(Y-B) = X - f^{-1}(B)$.

(iii) \Rightarrow (iv): Let A be a subset of X. Since $A \subset f^{-1}(f(A))$ we have $A \subset f^{-1}(\sigma_i - \operatorname{Cl}(f(A)))$ Now, $\operatorname{Cl}(f(A))$ is closed in Y and hence $\omega - \operatorname{Cl}_{\lambda}(A) \subset f^{-1}(\operatorname{Cl}(f(A)))$, for $\omega - \operatorname{Cl}_{\lambda}(A)$ is the smallest $\omega - \lambda$ -closed set containing A. Then $f(\omega - \operatorname{Cl}_{\lambda}(A)) \subset \operatorname{Cl}(f(A))$.

(iv) \Rightarrow (iii): Let F be any closed subset of Y. Then $f(\omega - \operatorname{Cl}_{\lambda}(f^{-1}(F))) \subset \operatorname{Cl}(f(f^{-1}(F)))$ $\subset \operatorname{Cl}(F) = F$. Therefore, $\omega - \operatorname{Cl}_{\lambda}(f^{-1}(F)) \subset f^{-1}(F)$ consequently, $f^{-1}(F)$ is $\omega - \lambda$ -closed in X. (iv) \Rightarrow (v): Let B be any subset of Y. Now, $f(\omega - \operatorname{Cl}_{\lambda}(f^{-1}(B))) \subset \operatorname{Cl}(f(f^{-1}(B))) \subset \operatorname{Cl}(B)$. Consequently, $\omega - \operatorname{Cl}_{\lambda}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}(B))$.

 $(\mathbf{v}) \Rightarrow (\mathbf{iv}) : \text{Let } \mathbf{B} = f(\mathbf{A}) \text{ where } \mathbf{A} \text{ is a subset of } \mathbf{X}. \text{ Then, } \boldsymbol{\omega} - \text{Cl}_{\lambda}(\mathbf{A}) \subset \boldsymbol{\omega} - \text{Cl}_{\lambda}(f^{-1}(\mathbf{B})) \\ \subset f^{-1}(\text{Cl}(\mathbf{B})) = f^{-1}(\text{Cl}(f(\mathbf{A}))). \text{ This shows that } f(\boldsymbol{\omega} - \text{Cl}_{\lambda}(\mathbf{A})) \subset \text{Cl}(f(\mathbf{A})).$

(i) \Rightarrow (iv): Let C be any subset of Y. Clearly, $f^{-1}(\operatorname{Int}(C))$ is $\omega - \lambda$ -open and we have $f^{-1}(\operatorname{Int}(C)) \subset \omega - \operatorname{Int}_{\lambda}(f^{-1}(\operatorname{Int}(C))) \subset \omega - \operatorname{Int}_{\lambda}(f^{-1}(C))$

(vi) \Rightarrow (i): Let B be an open set in Y. Then $\operatorname{Int}(B) = B$ and $f^{-1}(B) \subset f^{-1}(\operatorname{Int}(B))$ $\subset \omega - \operatorname{Int}_{\lambda}(f^{-1}(B))$. Hence we have $f^{-1}(B) = \omega - \operatorname{Int}_{\lambda}(f^{-1}(B))$. This shows that $f^{-1}(B)$ is $\omega - \lambda$ -open in X.

Theorem 3.4: Let $f: (X, \tau) \to (Y, \sigma)$ be a $\omega - \lambda$ -continuous surjective function. If X is λ -Lindelof, then Y is Lindelof.

Proof: Let $\{V_{\alpha} : \alpha \in \Delta\}$ be an open cover of Y. Then, $\{f^{-1}(V_{\alpha}) : \alpha \in \Delta\}$ is a $\omega - \lambda$ -cover of X. Since X is λ -Lindelof, X has a countable subcover, say $\{f^{-1}(V_{\alpha_i})\}_{i=1}^{\infty}$ and $V_{\alpha_i} \in \{V_{\alpha} : \alpha \in \Delta\}$ Hence $\{f^{-1}(V_{\alpha_i}) : \alpha \in \Delta\}$ is a countable subcover of Y. Hence, Y is Lindelof.

Definition 3.5:[1] A function $f : X \to Y$ is said to be λ -continuous if the inverse image of each open subset of Y is λ -open in X.

Corollary 3.6: Let $f: (X,\tau) \to (Y,\sigma)$ be a $\omega - \lambda$ -continuous (or λ -continuous) surjective function. If X is λ -Lindelof, then Y is Lindelof.

Definition 3.7: A function $f : X \to Y$ is said to be $\omega - \lambda^*$ -continuous if the inverse image of each λ -open subset of Y is $\omega - \lambda$ -open in X.

The proof of the following Theorem is similar to Theorem 3.4 and hence omitted.

Theorem 3.8: Let $f: (X, \tau) \to (Y, \sigma)$ be a $\omega \cdot \lambda^*$ -continuous surjective function. If X is λ -Lindelof, then Y is λ -Lindelof.

Theorem 3.9: A ω - λ -closed subset of a λ -Lindelof space X is λ -Lindelof relative to X.

Proof: Let A be an $\omega - \lambda$ -closed subset of X. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be a cover of A by λ -open sets of X. Now for each $x \in X - A$, there is a λ -open set V_x such that $V_x \cap A$ is countable. Since $\{U_{\alpha} : \alpha \in \Delta\} \cup \{V_x : x \in X - A\}$ is a λ -open cover of X and X is λ -Lindelof, there exists a countable subcover $\{U_{\alpha_i} : i \in N\} \cup \{V_{x_i} : i \in N\}$. Since $\bigcup_{i \in \mathbb{N}} (V_{x_i} \cap A)$ is countable, so for each $x_j \in \cup (V_{x_i} \cap A)$,

there is $U_{\alpha(x_j)} \in \{U_{\alpha} : \alpha \in \Delta\}$ such that $x_j \in U_{\alpha(x_j)}$ and $j \in \mathbb{N}$. Hence $\{U_{\alpha_i} : i \in \mathbb{N}\} \cup \{U_{\alpha(x_j)} : j \in \mathbb{N}\}$ is a countable subcover of $\{U_{\alpha} : \alpha \in \Delta\}$ and it covers A. Therefore, A is λ -Lindelof relative to X.

Corollary 3.10: If a topological space X is λ -Lindelof and A is ω -closed (or λ -closed), then A is λ -Lindelof relative to X.

Definition 3.11: A function $f : X \to Y$ is said to be λ -closed if f(A) is $\omega - \lambda$ -closed in Y for each λ -closed set A of X.

Theorem 3.12: If $f : X \to Y$ is an $\omega - \lambda$ -closed surjection such that $f^{-1}(y)$ is λ -Lindelof relative to X and Y is λ -Lindelof, then X is λ -Lindelof.

Proof: Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any λ -open cover of X. For each $y \in Y$, $f^{-1}(y)$ is λ -Lindelof relative to X and there exists a countable subset $\Delta_1(y)$ of Δ such that $f^{-1}(y) \subset \cup \{U_{\alpha} : \alpha \in \Delta_1(y)\}$. Now, we put V(y) = Y - f(X - V(y)). Then, since f is $\omega \cdot \lambda$ -closed, V(y) is an $\omega \cdot \lambda$ -open set in Y containing y such that $f^{-1}(V(y)) \subset U(y)$. Since V(y) is $\omega \cdot \lambda$ -open, there exists a λ -open set W(y) containing y such that W(y) - V(y) is a countable set. For each $y \in Y$, we have $W(y) \subset (W(y) - V(y)) \cup V(y)$ and hence $f^{-1}(W(y)) \subset f^{-1}(W(y) - V(y)) \cup f^{-1}(V(y)) \subset f^{-1}(W(y) - V(y)) \cup U(y)$.

Since W(y) - V(y) is a countable set and $f^{-1}(y)$ is λ - Lindelof relative to X, there exists a countable set $\Delta_1(y)$ of Δ such that $f^{-1}(W(y) - V(y)) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_2(y)\}$ and hence $f^{-1}(W(y)) \subset (\bigcup \{U_{\alpha} : \alpha \in \Delta_2(y)\}) \cup U(y)$. Since $\{W(y) : y \in Y\}$ is a λ -open cover of the λ -Lindelof space Y,

there exist countable points of Y, say y_1, y_2, \dots, y_n such that $\mathbf{Y} = \bigcup \{ \mathbf{W}(y_i) : i \in \mathbf{N} \}$. Therefore, we obtain

$$\mathbf{X} = \bigcup_{i \in \mathbf{N}} f^{-1} (\mathbf{W}(y_i)) = \bigcup_{i \in \mathbf{N}} \left(\left(\bigcup_{\alpha \in \Delta_2(y_i)} \mathbf{U}_{\alpha} \right) \cup \left(\bigcup_{\alpha \in \Delta_1(y_i)} \mathbf{U}_{\alpha} \right) \right) = \{ \mathbf{U}_{\alpha} : \alpha \in \Delta_1(y_i) \cup \alpha \in \Delta_2(y_i), i \in \mathbf{N} \}.$$

This shows that X is λ -Lindelof.

References

- [1] F.G.Arenas, J.Dontchev and M.Ganster, On λ-closed sets and dual of generalized continuity, *Q&A Gen.Topology*, 15, (1997), 3-13.
- M.Caldas, S.Jafari and G.Navalagi, More on λ-closed sets in topological spaces, *Revista Columbiana de Matematica*, 41(2), (2007), 355-369.
- [3] H.Maki, Generalized Λ -sets and the associated closure operator, *The special issue in commemoration of Prof. Kazusada IKEDA's Retirement*, (1.Oct, 1986), 139-146.