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Abstract: An error estimation of the integrated variant of the tau method for ordinary differential equations is 

hereby considered for the class of equations characterized by  m+s ≤ 2  where m and s are, respectively, the 

order and the number of overdetermination of  the differential equation. Some general results are obtained and 

applied to test problems. Numerical evidences show that the estimate adequately captures the order of the tau 

approximation.  
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I. Introduction 
The tau method was originally developed by Lanzcos (1938) for the solution of the m-th order problem 

   

Ly x ≡  𝑃𝑟

𝑚

𝑟=0

 x 𝑦 𝑟 (x) = f x ,                            a ≤ x ≤ b                   (1) 

With the conditions 

𝐿 ∗ 𝑦 𝑥𝑟𝑘  ≡  𝑎𝑟𝑘

𝑚

𝑟=0

 𝑥 𝑦 𝑟  𝑥𝑟𝑘  = 𝛼𝑘 ,             𝑘 = 1 1 𝑚                   (2) 

Where  𝑦 𝑟  𝑥   stands for the derivatives of order 𝑦(𝑥), 𝑓(𝑥) and  𝑃𝑟 𝑥 , 𝑟 =0,1, … , m, are polynomials (or 

polynomial approximations immediately derivable by using the tau method) of given function; where  𝑎𝑟𝑘  , 𝑥𝑟𝑘   

and 𝛼𝑘  and given real numbers. 

 The method solves problem (1) by seeking an approximation: 

𝑦𝑛  𝑥 =  𝑎𝑟𝑥
𝑟

𝑛

𝑟=0

                      𝑛 < +∞                                                           (3) 

This is the exact solution of the perturbed form: 

𝐿𝑦𝑛  𝑥 : ≡  𝑃𝑟 𝑥 

𝑚

𝑟=0

𝑦𝑛
 𝑟  𝑥 = 𝑓 𝑥 + 𝐻𝑛  𝑥                                                (4) 

With the conditions stated by Eq.(2) 

𝑃𝑟 𝑥 =  𝑃𝑟𝑘𝑥
𝑘𝑁𝑟

𝑘=0                                                                                                                    (5) 

𝐻𝑛(𝑥)is a linear combination of Chebyshev polynomials valid in the interval [a, b] and it may be of the form 

𝐻𝑛  𝑥 =  𝑇𝑚 +𝑠−1  𝑇𝑛−𝑚+𝑟+1(𝑥)

𝑚+𝑠−1

𝑟=0

                                                                      (6) 

The parameters in Eq. (6) is the number of over-determinations of Eq.(4). 𝑇𝑟  ′𝑠 are the tau parameters to 

be determined. By inserting (3) into Eq. (4) and then applying the conditions (2), we get the system of linear 

equation in (n+m+s+1) unknown constants ar, (r=0(1)n), 𝑇1  ,𝑇2 , … , 𝑇𝑚+𝑠 . This system is then solved to obtain 

the (n+m+s+1) unknown constants which are to be substituted into Eq. (2) in order to get our approximate 

solution of Eq. (1). 

Lanzcos introduced the use of the canonical polynomials 𝑄𝑟  (x),   r ≥ 0,  

𝐿𝑄𝑟 (x)=𝑥𝑟                                                                                                                                                   (7) 

Where L is the linear operator 

 

𝐿 =  𝑃𝑟
𝑚
𝑟=0  𝑥 

𝑑𝑟

𝑑𝑥 𝑟                                                                                                                                  (8)  

The expression of the approximate solution 𝑦𝑛(𝑥) in terms of a canonical polynomials offers several 

advantages because it does not depend on the boundary condition of the problems which we want to solve nor 
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on the interval in which the solution is sought, allowing for every segmentation of the domain. They are 

permanent in the sense that if an approximation of higher degree is required, the computation does not need to 

be repeated from the beginning. Furthermore, the tau method does not require a stage of discretisation of the 

given differential operator; as discrete variable method do. 

A recursive generation of polynomial was introduced by Ortiz (1969) to give some flexibility in the 

computation of the conical polynomials. 

An approach developed  for an improved accuracy of the approximation 𝑦𝑛(𝑥) of  𝑦(𝑥), is the 

integrated function, whereby we first integrate through Eq. (1), to have 

 

𝐼𝐿 y x  : =  𝑚..  ( 𝑃𝑟 𝑥 

𝑚

𝑟=0

𝑦 𝑟  𝑥 )𝑑𝑥𝑑𝑥 …𝑑𝑥                           (9) 

=  𝑚..  [( 𝑓𝑟𝑥
𝑟 +  𝑇𝑚 +𝑠−1 𝑇𝑛−𝑚+𝑟+1(𝑥)]

𝑚+𝑠−1

𝑟=0

𝑚

𝑟=0

𝑑𝑥𝑑𝑥 …𝑑𝑥       (10) 

 

Thus, 

𝐼𝐿 𝑦𝑛  𝑥  =  𝑚..  [(  𝑓𝑟

𝑚

𝑟=0

𝑥𝑟 +   𝑇𝑚+𝑠−1 𝑇𝑛−𝑚+𝑟+1(𝑥)]𝑑𝑥𝑑𝑥 . . . 𝑑𝑥 + 𝐻𝑛+𝑚 (𝑥)  (11)

𝑚+𝑠−1

𝑟=0

 

the higher order of the perturbation  in Eq. (10) account for the improvement in accuracy of 𝑦 𝑥  in contrast of 

the differential and recursive formulations. 

 

1.1 DEFINATION OF TERMS 

Definition 1.1.1 

A differential equation (or a system of differential equation) together with its associated given conditions will be 
referred to a Differential system. 

Definition 1.1.2 

The differential system  

𝐿𝑦𝑛  𝑥 : ≡  𝑃𝑟 𝑥 𝑦
 𝑟  𝑥 = 𝑓 𝑥 +  𝐻𝑛 𝑥 

𝑚

𝑟=0

                                                   (12) 

𝐿 ∗ 𝑦𝑛  𝑥𝑟𝑘 ∶  =  𝑎𝑟𝑘𝑦𝑛
 𝑟 

𝑚

𝑟=0

 𝑥𝑟𝑘  =∝𝑟𝑘                      𝑘 = 1 1 𝑚                           (13) 

will be called the Tau problem corresponding to the differential system 

𝐿𝑦 𝑥 :  =  𝑃𝑟 𝑥 𝑦
 𝑟  𝑥 = 𝑓 𝑥 

𝑚

𝑟=0

                                                                                (14) 

𝐿 ∗ 𝑦 𝑥𝑟𝑘  ∶  =  𝑎𝑟𝑘𝑦
 𝑟 

𝑚−1

𝑟=0

 𝑥𝑟𝑘  =∝𝑘                      𝑘 = 1 1 𝑚                             (15)  

We call the n-th degree polynomial,  𝑦𝑛 (𝑥), which satisfies the Tau problem (12), the tau approximant of (13) 

and the tau solution of Eq. (12) resulting in the process of solution of (13) will be referred to as tau system of 

problem (12). 

Definition 1.1.3 

The system of equation A𝜏   = B where  𝜏 = (𝑎0, 𝑎1, 𝑎2, . . .    . . ., 𝑎𝑛  , 𝜏1, 𝜏2 , 𝜏3 , . . . 𝜏𝑚+𝑠  ,)T , 

Resulting the process of solution tau of (13) will be referred to as Tau System of (12) 

Definition 1.1.4 

The number of over-determination of the DE (1) is defined by 

S= max {Nr – r: 0 ≤ r ≤ m}  ≥ 0 𝑓𝑜𝑟  𝑁𝑟 ≥ 𝑟 

 

II. Derivation Of Tau Approximant 
We consider here the derivation of tau approximants of varying orders and degrees, for the class of 

problem: 

𝐿𝑦 𝑥 :  =  𝑃𝑟 𝑥 𝑦
 𝑟  𝑥 = 𝑓 𝑥 

𝑚

𝑟=0

,          𝑎 ≤ 𝑥 ≤ 𝑏                                                (16)        

𝐿 ∗ 𝑦 𝑥𝑟𝑘  ∶  =  𝑎𝑟𝑘𝑦
 𝑟 

𝑚−1

𝑟=0

 𝑥𝑟𝑘  =∝𝑘                      𝑘 = 0 1  𝑚 − 1                (17)   



On The Integrated Formulation Of The Tau Method Involving At Most Two Tau Parameters for  Ivps 

www.iosrjournals.org                                                            25 | Page 

where, 

𝑃𝑟 𝑥 =  𝑃𝑟𝑘𝑥
𝑘

𝑁𝑟

𝑘=0

                                                                                                                           (18) 

The amount of work as well as the size of the space this will involve is enormous; we shall illustrate 

the procedure for a fifth degree approximant and then provide only the results for approximants of other 

degrees. In the work, we shall derive a fifth degree approximant for 

𝐿𝑦𝑛  𝑥 : ≡  𝑃𝑟 𝑥 

𝑚

𝑟=0

𝑦𝑛
 𝑟  𝑥 =   𝑓𝑟𝑥

𝑟 + 𝐻𝑚+𝑛  𝑥 

𝑛

𝑟=0

                                                                (19) 

The case m = 1, s = 0 
From (1) above, the general case for m=1 and s = 0 is given by; 

Ly(x)≡  𝑃10 + 𝑃11𝑥 𝑦
′ 𝑥 + 𝑃00𝑦 𝑥 =  𝑓𝑟𝑥

𝑟𝑛
𝑖=0 + 𝜏1𝑇𝑛  𝑥                                                                     (20) 

And from (11) we have 

𝐼𝐿  𝑦 𝑥 =   𝑃10 + 𝑃11𝑡 𝑑𝑡 +  𝑝00  𝑦(𝑡)
𝑥

0

𝑑𝑡
𝑥

0

=   𝑓𝑟𝑡
𝑟

𝑛

𝑟=0

𝑑𝑡
𝑥

0

+ 𝜏1𝑇𝑛  𝑥                                 (21) 

where, 

𝑇𝑛  𝑥     =     𝐶𝑟
(𝑛)

𝑥𝑟𝑛
𝑟=0  

 
This leads to 

𝑃10 𝑦𝑛  𝑥 −∝0 + 𝑃11 [𝑥𝑦𝑛 (𝑥) −  𝑦𝑛  𝑡 𝑑𝑡
𝑥

0

] + 𝑃00  𝑦𝑛  𝑡 𝑑𝑡
𝑥

0

=  ( 𝑓𝑟𝑡
𝑟𝑑𝑡 +

𝑛

𝑟=0

𝜏1  𝐶𝑟
(𝑛)

𝑥𝑟    (22)

𝑛

𝑟=0

𝑥

0

 

We seek an approximant solution of the form 

𝑦𝑛  𝑥 =  𝑎𝑟𝑥
𝑟𝑛

𝑟=0                                                                                                                                                       (23) 

 

With (23), (22) now becomes, 

𝑃10  𝑎𝑟𝑥
𝑟

𝑛

𝑟=0

− 𝑃10 ∝0+ 𝑃11 [ 𝑎𝑟𝑥
𝑟+1

𝑛

𝑟=0

−  𝑎𝑟

𝑥𝑟+1

𝑟 + 1
] + 𝑃00  𝑎𝑟

𝑥𝑟+1

𝑟 + 1
=          𝑓𝑟

𝑥𝑟+1

𝑟 + 1
+ 𝜏1𝑎 𝐶𝑟

(𝑛)
𝑋𝑟        (24)

𝑛

𝑟=0

𝑛

𝑟=0

𝑛

𝑟=0

𝑛

𝑟=0

 

This gives 

𝑃10  𝑎𝑟𝑥
𝑟

𝑛

𝑟=0

+   
𝑃00 + 𝑟𝑃11

𝑟 + 1
 𝑎𝑟𝑥

𝑟 − 𝜏1  𝐶𝑟
(𝑛)

𝑥𝑟 =  𝑓𝑟
𝑥𝑟+1

𝑟 + 1
+ 𝑃10 ∝0                (25)

𝑛

𝑟=0

𝑛

𝑟=0

𝑛

𝑟=0

 

Thus, for example, when n =5, we have: 

𝑃10  𝑎𝑟𝑥
𝑟 +  [

𝑃00 + 𝑟𝑃11

𝑟 + 1
]

5

𝑟=0

𝑎𝑟𝑥
𝑟 − 𝜏1  𝐶𝑟

(𝑛)
𝑥𝑟 =  𝑓𝑟

𝑥𝑟+1

𝑟 + 1

𝑛

𝑟=0

5

𝑟=0

5

𝑟=0

+ 𝑃10 ∝0      (26) 

Equating corresponding coefficients power of x, we obtain the tau system 

 
Continuing with the process, using m = 1 and  s =1. By expanding (27), we obtain the following tau system 

For m=1, s =1 ,we have, 
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where 

N32 = 
𝑃00 +𝑃11

2
,   N42 =

𝑃01 +𝑃12

2
,  N43 = 

𝑃00 +𝑃11

3
,  N53 = 

𝑃01 +𝑃12

4
,  N54 = 

𝑃00 +𝑃11

4
,    N64  = 

𝑃01 +𝑃12

5
,    N65 =  

𝑃00 +𝑃11

5
,   

N75 = 
𝑃01 +𝑃12

6
, N76 = 

𝑃00 +𝑃11

6
,  N86  =  

𝑃01 +𝑃12

7
 

The case m = 2, s = 0 

From (1) the general case for m = 2 and  s = 0 is given by 

Ly(x)≡  𝑃20 + 𝑃21𝑥 + 𝑃22𝑥
2 𝑦 ′′ 𝑥 +  𝑃10 + 𝑃11𝑥 𝑦

′ 𝑥 + 𝑃00𝑦 𝑥 =  𝑓𝑟𝑥
𝑟 + 𝐻𝑛+𝑚  𝑥 𝑛

𝑟=0     (29) 

𝑦 0  = 𝛼0 , y’(0)= 𝛼1  , α ≤ x ≤ b 

 
where , 

𝐻𝑚+𝑛  𝑥 = 𝑇𝑛+2 𝑥 + 𝑇𝑛+1 𝑥                                                                                                        (30) 

   𝑃20 + 𝑃21𝑡 + 𝑃22𝑡
2 𝑦𝑛

′′ 𝑡 𝑑𝑡𝑑𝑢 +   (𝑃10 + 𝑃11𝑡)𝑦𝑛

𝑢

0

′ 𝑡 𝑑𝑡𝑑𝑢
𝑥

𝑜

𝑢

0

𝑥

0

+    𝑃00𝑦𝑛 (𝑡) 𝑑𝑡𝑑𝑢 =    𝑓𝑟𝑥
𝑟 + 𝜏1𝑇𝑛 +2(𝑥) + 𝜏2𝑇𝑛+1(𝑥)    (31)

𝑛

𝑟=0

𝑢

0

𝑥

0

𝑢

0

𝑥

0

 

We integrate the terms in (31) to have, 

−𝑃20 ∝0− 𝑃20 ∝1+ 𝑃21 ∝0 𝑥 + 𝑃20  𝑎𝑟𝑥
𝑟 + 𝑃21  𝑎𝑟𝑥

𝑟+1 − 2𝑃21  𝑎𝑟
𝑥 𝑟+1

𝑟+1
+ 𝑃22  𝑎𝑟𝑥

𝑟+2 −𝑛
𝑟=0

𝑛
𝑟=0

𝑛
𝑟=0

𝑛
𝑟=0

4𝑃22  𝑎𝑟
𝑥 𝑟+2

𝑟+2
+ 2𝑃22  𝑎𝑟

𝑥 𝑟+2

(𝑟+1)(𝑟+2)
+ 𝑃11  𝑎𝑟

𝑥 𝑟+2

𝑟+2
− 𝑃11  𝑎𝑟

𝑥 𝑟+2

(𝑟+1)(𝑟+2)
+ 𝑃10  𝑎𝑟

𝑥 𝑟+1

𝑟+1
+𝑛

𝑟=0
𝑛
𝑟=0

𝑛
𝑟=0

𝑛
𝑟=0

𝑛
𝑟=0

𝑃00  𝑎𝑟
𝑥 𝑟+2

(𝑟+1)(𝑟+2)
− 𝜏1  −𝐶𝑟

(𝑛+2)
𝑥𝑟 − 𝜏2  −𝐶𝑟

(𝑛+1)
𝑥𝑟𝑛+1

𝑟=0
𝑛+1
𝑟=0 =𝑛

𝑟=0

 𝑓𝑟
𝑥 𝑟+2

(𝑟+1)(𝑟+2)
                                                                                                                                       (32)𝑛

𝑟=0   

This gives, 

 𝑃20𝑎𝑟𝑥
𝑟 +   

 𝑟−1 𝑃21 +𝑃10

𝑟+1
 𝑎𝑟𝑥

𝑟+1 +   
𝑃00 +𝑟𝑃11 + 𝑟2−𝑟 𝑃22

(𝑟+1)(𝑟+2)
 𝑎𝑟𝑥

𝑟+2 −𝑛
𝑟=0

𝑛
𝑟=0

𝑛
𝑟=0

𝜏1  𝐶𝑟
𝑛+2𝑥𝑟 −  𝜏2  𝐶𝑟

(𝑛+1)
𝑥𝑟 = 𝑃20 ∝0+   𝑃10 − 𝑃21 ∝0+ 𝑃20 ∝1 𝑥 +𝑛+2

𝑖=0
𝑛
𝑟=0

 𝑓𝑟
𝑥 𝑟+2

(𝑟+1)(𝑟+2)
                                                                                                                          (33)𝑛

𝑟=0   

Equating the corresponding coefficients of powers of x in (33) when n =5 we have the tau system 

 

D= 

 

 
 
 
 
 
 
 
 
 

𝑃10           0              0              0              0              0           −𝐶0
 7 

        −𝐶0
(6)

𝑃10 − 𝑃21     𝑃20            0              0              0              0          −𝐶1
 7 

         −𝐶1
(6)

      
𝑃00

2
          

𝑃10

2
          𝑃20            0              0             0           −𝐶2

 7 
          −𝐶1

(6)

 0              𝑅42         𝑅43             𝑃20           0             0           −𝐶3
 7 

          −𝐶3
 6 

 0              0             𝑅53           𝑅54           𝑃20           0           −𝐶4
 7 

          −𝐶4
 7 

0              0             0              𝑅64           𝑅65          𝑃20         −𝐶4
 7 

         −𝐶4
 7 

   0              0              0                 0          𝑅75          𝑅76         −𝐶4
 7 

         −𝐶4
 7 

   

0              0              0                 0           0            𝑅86         −𝐶4
 7 

              0     

 
 
 
 
 
 
 
 
 

    (34) 

 

 

E=

 

 
 
 
 
 

𝑎0

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝜏1

𝜏1  

 
 
 
 
 

  F=

 

 
 
 
 
 
 
 

𝑃10 ∝0

𝑓0

𝑓1
2 

𝑓2
3 

𝑓3
4 

𝑓4
5 

𝑓5
6 

0  

 
 
 
 
 
 
 

     (35) 

Then, for m=2, s=0 and n=5       DE=F 
where, 
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R42 =
𝑃00 +𝑃11

6
, R43=

𝑃10 +𝑃21

3
, R53=

𝑃00 +2𝑃11 +2𝑃22

12
, R54=

𝑃10 +2𝑃21

4
, R64=

𝑃00 +3𝑃11 +6𝑃22

20
,          

R65=
𝑃10 +3𝑃21

5
, R75=

𝑃00 +4𝑃11 +12𝑃22

30
, R76  =

 𝑃10 +4𝑃21

6
, R86=

𝑃00 +5𝑃11 +20𝑃22

42
, 

and, 

akk = Pm0, ∀ k= 1(1)(n+1)   ∀ m.                                                                                   (36) 

akr =

 
 
 

 
 

𝑃𝑚 0−1,0+ 𝑟−𝑚 𝑃𝑚 1

𝑟
 ∀  k = 2(1) n + 2 , r = 1(1) n + 1  ∀ m = 1                                      

Pm −2,0+ r−m+1 Pm −1,1+ r−m+1  r−m Pm ,2

r(r+1)
 ∀ k = 3 1  n + 3  , r = 1 1  n + 1  ∀ m = 2

P0,s +(r−1)P1,s+1

r+s
  ∀ k =  s + m + 1  1  n + s + m  , r = 1 1  n + 1                       (37)

   

 

𝑎𝑘𝑟 =  
0  ,          ∀  r > 𝑘, 𝑘 = 1 1 n, r = 2 1  n + 1                  
0  ,          ∀ k =  m + s + 2  1  n + 3 ,           r = 1 1 n

                38                

 

𝑎𝑘 ,𝑛+2 = −𝐶𝑘−1
(𝑛+2)

              k=1(1)(n+3)                                                                                   (39a) 

𝑎𝑘 ,𝑛+3 = −𝐶𝑘−1
(𝑛+1)

              k=1(1)(n+2)                                                                                    (39b) 

 

𝑏1 = 𝑃𝑚 ,0 ∝0                ∀𝑚                                                                                     (40) 

𝑏2 =
1

 𝑚 − 1 !
 ∝0  (−1)𝑟𝑟! 𝑃𝑟+1,𝑟 +∝1  (−1)𝑟𝑟! 𝑃𝑟+2 ,𝑟

0

𝑟=0

1

𝑟=0

         ∀𝑚 = 2        (41) 

𝑏𝑖 =

 
 

 
𝑓𝑖−2

𝑖 − 1
                 ∀𝑚 = 1 ,    ∀𝑖 = 2 1 (𝑛 + 2)

𝑓𝑖−3

(𝑖 − 1)(𝑖 − 2)
  ∀𝑚 = 2,   ∀𝑖 = 3 1 (𝑛 + 3)

                                    (42) 

   

III. Procedure For Error Estimation 

The integrated formulation of the tau method often leads to better accuracy of the tau solution. (See  

Fox(1962) and Ortiz(1993)). To this end, let  … 𝑖  𝑔 𝑥 𝑑𝑥 denote the indefinite integration i times applied to 

the function g(x) and let 

𝐼𝐿 =  … 𝑚  𝐿 .  𝑑𝑥                                                                          (43) 

The integration form of  

L(𝑒𝑛(x) )= -Hn(x)dx                                                                                                         (44) 

                                 

is therefore 

𝐼𝐿 𝑒𝑛 𝑥  = − … 𝑚  𝐻𝑛(𝑥)𝑑𝑥                                                       (45) 

We considered the perturbed form of (42) i.e. the perturbed integrated error equation 
 

                                 𝐼𝐿 𝑒𝑛 𝑥  𝑛+1
= − … 𝑚  𝐻𝑛(𝑥)𝑑𝑥 + Ĥ𝑚+𝑛+1(𝑥)                               (46) 

which is equivalent to  

𝐼𝐿 𝑒𝑛 𝑥  𝑛+1
= − …𝑚  (  𝑇𝑚+𝑠−1𝑇𝑛+𝑟+1(𝑥) + 𝐶𝑚 (𝑥))𝑑𝑥

𝑚+𝑠−1

𝑟=0

+  𝑇𝑚 +𝑠−1𝑇𝑛+𝑟+3 𝑥 

𝑚+𝑠−1

𝑟=0

                                       (47) 

and  which is satisfied by    𝑒𝑛 𝑥  𝑛+1
 ,  given by 

 

 𝑒𝑛 𝑥  𝑛+1
=

𝜇𝑚  𝑥 ∅𝑛𝑇𝑛−𝑚+1(𝑥)

𝐶𝑛−𝑚+1
(𝑛−𝑚+1)

                                                   (48) 

With ∅n replaced by ∅ 𝑛    where , 
 

Ĥ𝑚+𝑛+1 𝑥 =  𝜏 1𝑇𝑛+𝑚+𝑠+1
∗  𝑥 + 𝜏 2𝑇𝑛+𝑚+𝑠+1

∗  𝑥 +  …  𝜏 𝑚+𝑠𝑇𝑛 +𝑚+𝑠+1
∗  𝑥       49  

 

We insert (48) in (47) and then equate the coefficient of x
n+m+s+1

,  x
n+m+s

,  …. , x
n-m 
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for the determination of the parameter  ∅ 𝑛     𝑜𝑓  𝑒𝑛 𝑥  𝑛+1
. We then have 

𝜀∗ =
 ∅ 𝑛    

22𝑛−2𝑚+1
                                                                                       (50) 

as an estimation of 𝜀 

We shall carry out these steps for obtaining ∅𝑛  with various values of m and s and then generalize the 

result to obtain a recursive formular for ∅𝑛 . 

 

IV. Error Estimation For The Integrated Formulation 
 The case m =1 , s = 0 
From (46) we have for the problem: 

𝐿𝑦 𝑥 ∶=  𝑃10 + 𝑃11𝑥 𝑦
′(𝑥) + 𝑃00𝑦(𝑥) =  𝑓𝑟𝑥

𝑟 ,         𝑎 ≤ 𝑥 ≤ 𝑏                  (51)

𝐹

𝑟=0

 

𝑦 𝑎 =∝0 
The equation : 

𝐿𝑦 𝑥 ≔   𝑃10 + 𝑃11𝑢 (𝑒𝑛
′  𝑢 )𝑛+1𝑑𝑢 +  𝑃00 (𝑒𝑛

′  𝑢 )𝑛+1𝑑𝑢
𝑥

0

𝑥

0

=  −𝜏1  ( 𝐶𝑟
(𝑛)

𝑢𝑟)𝑑𝑢 + 𝜏1  𝐶𝑟
(𝑛+2)

𝑥𝑟                       (52)

𝑛+2

𝑟=0

𝑛

𝑟=0

𝑥

0

 

where 

 𝑒𝑛  𝑥  𝑛+1
=

𝑥𝑇𝑛 (𝑥)∅𝑛

𝐶𝑛
(𝑛)

                                                                                             (53) 

that is, 

 𝑒𝑛 𝑥  𝑛+1
=

∅𝑛

𝑘1

[𝐾1𝑥
𝑛+1 + 𝐾2𝑥

𝑛 + 𝐾3𝑥
𝑛−1 + + +  … ]                                   (54) 

 

Where 𝑘1 = 𝐶𝑛
(𝑛)

 , 𝑘2 = 𝐶𝑛−1
(𝑛)

 , 𝑘3 = 𝐶𝑛−2
(𝑛)

 

Now, 

  𝑒𝑛 𝑥  𝑛+1
=

𝑥

0

∅𝑛

𝑘1

 
𝑘1𝑥

𝑛+2

𝑛 + 2
+

𝑘2𝑥
𝑛+1

𝑛 + 1
+

𝑘1𝑥
𝑛

𝑛
+ ++ . .               (55) 

Inserting (54) and (55) into (52) gives 

∅𝑛

𝑘1

 𝜆1𝑥
𝑛+2 + 𝜆2𝑥

𝑛+1 + + +  …  = 𝜏 1𝐶𝑛+2
(𝑛+2)

𝑥𝑛+2 +  𝜏1𝐶𝑛+2
 𝑛+2 

−
𝜏 2𝐶𝑛

 𝑛 

𝑛 + 1
 𝑥𝑛+1 + + + ⋯ (56) 

 

where , 

𝜆1 =  
𝑃00 +  𝑛 + 1 𝑃11

𝑛 + 2
 𝑘1 , 𝜆2 = 𝑃10𝑘1  

𝑃00 +  𝑛 + 1 𝑃11

𝑛 + 1
 𝑘2                  (57) 

Equating coefficient of corresponding powers of x from both sides of (52), gives 

 

 

 𝜏 1𝐶𝑛+2
(𝑛+2)

=
∅𝑛 𝜆1

𝑘1
                                                                                                                             (58) 

𝜏 1𝐶𝑛+2
(𝑛+2)

−
𝜏1𝑘1

𝑛 + 1
=

∅𝑛𝜆2

𝑘1

                                                                        (59) 

From (57) we have 

𝜏 1 =
∅𝑛𝜆1

𝑘1𝐶𝑛+2
(𝑛+2)

                                                                                            (60) 

Inserting this into (59) gives 

∅𝑛 =
𝜏1𝑘1

2

(𝑛+1)𝑅2
                                                                                                                                     (61)  

 where,  

𝑅2 = 𝜆2 −
𝜆1𝐶𝑛+2

(𝑛+2)

𝐶𝑛+2
(𝑛+2)

                                                                            (62) 

Let R1=𝜆1 , then R2 can be put in the following recursive form: 

R1=𝜆1                                                      (63) 
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𝑅2 = 𝜆2 −
𝐶𝑛+2

(𝑛+2)
𝑅1

𝐶𝑛+2
(𝑛+2)

                                                                            (64) 

 

The case m=1 s=1 

From (46) , the most general form for m=1 and s=1 is given by 

  𝑃10 + 𝑃11𝑢 + 𝑃12𝑢
2 (𝑒𝑛

′  𝑢 )𝑛+1𝑑𝑢 +  (𝑃00 +𝑃01𝑢)(𝑒𝑛
′  𝑢 )𝑛+1𝑑𝑢

𝑥

0

𝑥

0

=  −𝜏1   𝐶𝑟
(𝑛+1)

𝑢𝑟𝑑𝑢 − 𝜏1   𝐶𝑟
(𝑛)

𝑢𝑟𝑑𝑢 +

𝑛

𝑖=0

𝑥

0

𝑛+1

𝑟=0

𝑥

0

𝜏1  𝐶𝑟
(𝑛+3)

𝑥𝑟

𝑛+3

𝑟=0

+ 𝜏1  𝐶𝑟
(𝑛+2)

𝑥𝑟

𝑛+2

𝑟=0

                                                                       (65) 

where  𝑒𝑛  𝑥  𝑛+1
 in (65) is defined by (48). 

 

Thus, Inserting  𝑒𝑛 𝑥  𝑛+1
 and its integral into (65) gives 

 
∅𝑛

𝑘1

 𝜆1𝑥
𝑛+3 + 𝜆2𝑥

𝑛+2 + 𝜆3𝑥
𝑛+1 + + +  …  

= 𝜏 1𝐶𝑛+3
(𝑛+3)

𝑥𝑛+3 +  𝜏 1𝐶𝑛+2
 𝑛+3 

+ 𝜏 2𝐶𝑛+2
 𝑛+2 

−
𝜏1𝐶𝑛+1

 𝑛+1 

𝑛 + 2
 𝑥𝑛+2

+  𝜏 1𝐶𝑛+1
 𝑛+3 

+ 𝜏 2𝐶𝑛+1
 𝑛+2 

−
𝜏1𝐶𝑛

 𝑛+1 

𝑛 + 1
−

𝜏1𝐶𝑛
 𝑛 

𝑛 + 1
 𝑥𝑛+1 + + + ⋯ (66) 

where , 

𝜆1 = [
𝑃01 + (𝑛 + 1)𝑃12

𝑛 + 3
]𝑘1 

𝜆2 =  
𝑃01 +  𝑛 + 1 𝑃11

𝑛 + 2
 𝑘1 + [

𝑃01 + (𝑛 + 1)𝑃12

𝑛 + 2
]𝑘2 

𝜆3 = 𝑃10𝑘1 +  
𝑃01 +  𝑛 + 1 𝑃11

𝑛 + 1
 𝑘2 + [

𝑃01 + (𝑛 + 1)𝑃12

𝑛 + 1
]𝑘3 

𝑘1 = 𝐶𝑛
(𝑛)

 , 𝑘2 = 𝐶𝑛−1
(𝑛)

 , 𝑘3 = 𝐶𝑛−2
(𝑛)

                                (67) 

Equating coefficients of corresponding powers of from both sides of (66), we obtain the following system of 

equations 

 𝜏 1𝐶𝑛+2
(𝑛+2)

=
∅𝑛 𝜆1

𝑘1
                                                                                                                              (68) 

𝜏 1𝐶𝑛+2
(𝑛+2)

+ 𝜏 2𝐶𝑛+2
(𝑛+2)

−
𝜏1𝐶𝑛+1

 𝑛+1 

𝑛 + 2
=

∅𝑛𝜆2

𝑘1

                                                                        (69) 

𝜏 1𝐶𝑛+2
(𝑛+2)

+ 𝜏 2𝐶𝑛+2
(𝑛+2)

−
𝜏1𝐶𝑛

 𝑛+1 

𝑛 + 2
−

𝜏 1𝐶𝑛
 𝑛 

𝑛 + 2
=

∅𝑛𝜆3

𝑘1

                                                          (70) 

From (68) we have 

𝜏 1 =
∅𝑛𝜆1

𝑘1𝐶𝑛+3
(𝑛+3)

                                                                                                    (71) 

Inserting (71) into (69) and solving for 𝜏1 we have 

𝜏2 =
𝜏1𝐶𝑛+1

(𝑛+1)

(𝑛 + 2)𝐶𝑛+2
(𝑛+2)

+
∅𝑛

𝑘1

 [𝜆2 −
𝜏1𝐶𝑛+2

 𝑛+3 
𝜆1

𝐶𝑛+3
 𝑛+3 ]                                                (72) 

Inserting () and () into () and solving for we obtain 

∅𝑛 =
𝑘1

2𝜏1

(𝑛+1)𝑅3
                                                                                                                                           (73)  

where 

𝑅3 = 𝜆3 −
𝐶𝑛+3

(𝑛+3)
𝑅1

𝐶𝑛+3
(𝑛+3)

−
𝐶𝑛+1

(𝑛+2)
𝑅2

𝐶𝑛+2
(𝑛+2)

                                                                  (74) 

Thus, we have the following recursive form, 

𝑅1 = 𝜆1 
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𝑅2 = 𝜆2 −
𝐶𝑛+2

(𝑛+3)
𝑅2  

𝐶𝑛+3
(𝑛+3)

                                                                                        (75) 

We repeat he analysis discussed above with m =2 and thus, we obtain the following results: 

 For m = 2, s = 0 

∅𝑛 =
−𝑘1

2𝜏𝑚 +𝑠

𝑛(𝑛+1)𝑅3
                                                                                                                                       (76)  

Thus, we obtain general expression for ∅𝑛  as: 

∅𝑛 =
𝑘1

2𝜏1

∏𝑟=1
𝑚 (𝑛+𝑠+𝑟)𝑅𝑚 +𝑠+1

 ,                    ∀ 𝑚 + 𝑠 = 2                                                                       (77)  

Where 𝑘1 = 𝐶𝑛+𝑚−1
(𝑛+𝑚−1)

 

∅𝑛 =
𝑘1

2𝜏1

∏𝑟=1
𝑚 (𝑛 + 𝑠 + 𝑟 − 1)𝑅𝑚+𝑠+1

 ,                 ∀ 𝑚 + 𝑠 = 2                       (78) 

Where Rm+s+1 is given recursively in terms of R1, R2, R3, . . . . , Rm+s as follows: 

R1=𝜆1 

 

𝑅𝑢 = 𝜆𝑢 −  
𝐶𝑛+𝑢−1−𝑠

(𝑛+𝑢−𝑖)

𝐶𝑛+𝑢−1
(𝑛+𝑢−1)

𝑅𝑖          𝑢 = 2,3, … , 𝑚 + 𝑠 + 1                                            (79)

𝑛

𝑖=0

 

and  

𝜆𝑢 =  {

  𝑃𝑗  ,𝑠−𝑢+𝑖+𝑗  𝑗!  
𝑛 + 2 − 𝑖

𝑗
 𝑚

𝑗=0

∏𝑟=1
𝑚+𝑖−𝑢  𝑛 + 𝑠 + 𝑚 + 3 − 𝑢 − 𝑟 

}𝑘𝑖   𝑢 = 2,3, … , 𝑚 + 𝑠 + 1          (80)

𝑢

𝑖=0

 

Provided i ≥  u- m+1 

Thus, from  (50) ,we have the following expression for 𝜀∗ : 

𝜀∗ =
−𝑘1𝜏𝑚 +𝑠

∏ (𝑛+𝑠+𝑟)𝑅𝑚 +𝑠+1
𝑚
𝑟=1

 ,               ∀ 𝑚 + 𝑠 = 1                                                                               (81) 

where   𝑘1   = 𝐶(𝑛−𝑚+1)
(𝑛−𝑚+1)

          and  

𝜀∗ =
−𝑘1𝜏𝑚 +𝑠

∏ (𝑛+𝑠+𝑟−1)𝑅𝑚 +𝑠+1
𝑚
𝑟=1

 ,               ∀ 𝑚 + 𝑠 = 2                                                                         (82) 

 

V. Numerical Examples 
We consider here some selected examples for experimentation with our results of the preceeding 

section for m+s =1and m+s=2, the exact error is defined as  

𝜉ℓ = 𝑚𝑎𝑥𝑎  ≤𝑥≤𝑏  𝑦(𝑥𝑘) − 𝑦𝑛 (𝑥𝑘)  , ℓ = 1,2,3, ……  
where {𝑥𝑘}= {0.01k}, for k = 0(1) ≤ 100 
The numerical results are presented in the tables bellow the examples 

Problem 4.1 

𝑦 ′′ 𝑥  -𝑦(𝑥) = 0      𝑦 𝑥 = 𝑒𝑥  

𝑦(0) = 1,    𝑦 ′(𝑥) = 1,          0≤ 𝑥  ≤ 1 
 

 

 

 

Table 4.1 
Error and error estimation for problem 4.1 

Error            n   2 3 4 5 

Estimates 4.61 x 10-3 7.50 x 10-5 9.46 x 10-7 5.34 x 10-8 

Exact 3.67 x 10-3 1.01 x 10-5 4.53 x 10-7 2.37 x 10-8 

 

Problem 4.2 

𝑦 ′(𝑥)-2𝑥𝑦(𝑥) = 1 – 𝑥2      

𝑦 0  = 0          0  ≤ 𝑥 ≤ 1 

Table 4.2 

Error and error estimation for example 3.2 

Error                n     2 3 4 5 

Estimates 6.01 x 10-3 6.7 x 10-4 3.24 x 10-4 4.6 x 10-5 

Exact 9.34 x 10-2 7.11 x 10-4 4.89 x 10-4 4.35 x 10-5 
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Problem 4.3 

𝑦 ′ 𝑥 + 𝑥𝑦 𝑥 = 0     y(x) =ex 

𝑦 0 = 1,      𝑦 𝑥 =  𝑒
1

2
𝑥2

       0  ≤ x  ≤ 1 

 

Table 4.3 

Error and error estimation for problem 3.3 

  Error                 n   2 3 4 5 

Estimates 3.51 x 10-3 4.60 x 10-4 5.65 x 10-5 9.02 x 10-6 

Exact 1.34 x 10-2 2.37 x 10-4 3.1 x 10-5 4.67 x 10-6 

 

Problem 4.4 

𝑦 ′′ 𝑥 + 𝑦 𝑥 =  𝑥2     0  ≤ 𝑥 ≤ 1 

𝑦(0)  = 0 ,    𝑦 ′ (0) = 3       𝑦(𝑥) = 2 cos𝑥 + 3 sin 𝑥 + 𝑥2 − 2         

Table 4.4 

Error and error estimation for problem 4.4 

Error                n     2 3 4 5 

Estimates 6.46 x 10-4 4.23 x 10-5 7.0 x 10-7 3.85 x 10-8 

Exact 8.84 x 10-3 1.06 x 10-5 2.86 x 10-6 2.14 x 10-7 

 

VI. Conclusion 

The integrated formulation of the tau method and its error estimation have been generalized for those 

ODEs, whose perturbed form involves a maximum of two tau parameters and consequently a maximum over-

determination number, s, and to one. 

The tau system for the determination of the tau approximation  𝑦𝑛 (𝑥) was first constructed. The error 

estimation which followed immediately provides the estimate of the error in  𝑦𝑛(𝑥). Numerical evidences, 

obtained for some selected problems, revealed that the estimate accurately captures the order of the exact error. 
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