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I. Introduction 

Let ∑ denote the class of functions of the form                    
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which are regular in E= { z: 0<| z | < 1}.  
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In [ 9 ] Uralegaddi and Somanatha obtained a new criteria for meromorphic starlike univalent functions via the 

basic inclusion relationship 1( ) ( )n nB B   ,(0  <1), 0 {0,1,2,...}n N  ,where ( )nB   is the class 

consisting of functions in ∑  satisfying  
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,  1z  , ( 0  <1),  0 {0,1,2,...}n N  .               (1.2) 

 We note that 0 ( ) ( )B  


 ,is the class of meromorphically starlike functions of order    ( 0  <1),  

and 0 (0)B


 is the class of meromorphically starlike functions.  Let A  be the subclass of  ∑ which 

consists of functions of the form     
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Further let  
, ( , ) ( , )A n n AB        . 

Definition1: Let ( )f z  be defined by (1.3).Then 
,( ) ( , )A nf z     if and only  

1

1

( )
1

( )

( )
2 3

( )

n

n

n

n

D f z

D f z

D f z

D f z













 

  for 1z  ,0  <1, 0 1  . 
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         In the present paper coefficient inequalities ,distortion theorem and closure theorems for the class 

, ( , )A n  
are obtained.Techniques used are similar to those Silverman [ 8 ].Finally, the class preserving 

integral operators of the form 
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    (c > 0).                                                           (1.4) 

 

II. Coefficient Inequalities 

Theorem 1.Let 
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Then  ( ) ( , )nf z B   . 

Proof: Suppose that equation (2.1) holds for all admissable values of ,   and n .  Consider the expression  

1 1( , ) ( ) ( ) ( ) (2 3) ( )n n n nH f f D f z D f z D f z D f z                             (2.2) 

Replacing ( )nD f z  and 
1 ( )nD f z

 by their series expansions, we have, for 0 1z r   , 
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               .Since the above inequality holds for all  r  (0 < r  <1), letting   1r  , we have 
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                0 , by (2.1). 

 

Hence it follows that  
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which shows that  ( ) ( , )nf z B   .Hence the Theorem is completely proved. For functions in  
, ( , )A n  

 

the converse of the above Theorem is also  true. 

Theorem 2.  A function  ( )f z  in  A  is in  
, ( , )A n  

 if and only if 
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Proof: In view of  Theorem 1, it is sufficient to prove that only if part. Let us assume that     

( )f z  is in 
, ( , )A n  

. Then 
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Using the  fact that Re( )z z  for all z,it follows that 



  On A Subclass Of Meromorphic Starlike Univalent Functions With Alternating Coefficients 

www.iosrjournals.org                                                            3 | Page 

1 1

1

1 1

1

( 1) ( 2) ( 1)

Re

2(1 ) ( 1) ( 2) ( 1 2 )

m n m

m

m

m n m

m

m

m m a z

m m a z
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Now choose the values of z on the real axis  so that   
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  is real.Upon clearing the denominator in 

(2.4) and letting 1z   through real values ,  we obtain  
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 This completes the proof of the Theorem. 

Corollary 1.Let the function ( )f z  defined by (1.3 ) be in the class 
, ( , )A n  

.Then 
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  , m=1,2,3,…..                        (2.5) 

Equality holds for the function of the form 
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III. Distortion Properties and Radius of Convexity 

Theorem 3. Let the function ( )f z  defined by (1.3 ) be in the class 
, ( , )A n  

.Then for  

0 1z r   , 
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with equality for the function 
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Proof: Suppose ( )f z  is in  
, ( , )A n  

. In view of Theorem 2, we have  
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Then for  0 1z r   , 
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This gives the right hand side inequality of (3.1). 

 

Also,                               
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which gives the left hand side inequality of (3.1) .This completes the proof. Putting 0n   and 1   in the 

above Theorem, we have the following. 

Corollary 2.Let the function ( )f z  defined by (1.3 ) be in the class 
,0( ,1) ( )A A     .Then for 

0 1z r   , 
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The result is sharp. 

We observe that our result in corollary 2 improves the result of Uralegaddi and Ganigi[10]   

Theorem 4. Let the function ( )f z  defined by ( 1.3 ) be in the class 
, ( , )A n  

.Then for  

0 1z r   , 
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The result is sharp,the extremal function being of the form (3.2). 

Proof: From Theorem 2, we have  
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Consequently,we obtain  
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This completes the proof.  

 

References 
[1] F. M. Al – Oboudi, On univalent functions defined by a generalized salagean operator, Internat J. Math. Math. Sci., 27(2004), 

1429-1436. 

[2] M. K. Aouf and H. M. Hossen, New criteria for meromorphic p – valent starlike functions, Tsukuba J. Math. 17(2)(1993), 481- 

486. 

[3] M. K. Aouf and H. E. Darwish, Meromorphic starlike univalent functions with alternating coefficients, Utilities Math. 47(1995), 

137-144. 

[4] M. Darus, S. B. Joshi and N. D. Sangle, Meromorphic starlike functions with alternating and missing coefficients, General 

Mathematics (2006), 113 – 126. 

[5] H. E. Darwish, Meromorphic p-valent starlike functions with negative coefficients, Indian. J. Pure Appl. Math. 33(7), 2002, 967-

976. 

[6] M. L. Mogra, T. R. Reddy and O. P. Juneja, Meromorphic univalent functions with positive coefficients, Bull. Austral. Math. Soc, 

32(1985) 161-176. 

[7] T. Ram Reddy and P. Thirupathi Reddy, Meromorphic p-valent 

[8] starlike functions with alternating coefficients, Bull. Pure Appl.Math.     Vol 3,(2009),254-262. 

[9] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1975), 109-116. 

[10] B. A. Uralegeddi and C. Somanatha, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc. 

43(1991), 137-140. 

[11] B. A. Uralegaddi and M. D. Ganigi, Meromorphic starlike functions  

[12] with alternating coefficients, Rend. Math. 11(7) (1991), 441- 446. 


