On A Subclass of Meromorphic Starlike Univalent Functions With Alternating Coefficients

T. Srinivas, P. Thirupathi Reddy, B. Madhavi
Department of Mathematics, Kakatiya University, Warangal- 506009 (A.P.) INDIA.

Abstract

Coefficient inequalities and distortion theorems are obtained for certain subclass of meromorphic starlike univalent functions with alternating coefficients. Further class preserving integral operators are obtained.

2000 Mathematics subject classification: 30 C 45.
Keywords: Regular, meromorphic, starlike, distortion theorem.

I. Introduction

Let \sum denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{m=1}^{\infty} a_{m} z^{m} \tag{1.1}
\end{equation*}
$$

which are regular in $E=\{z: 0<|z|<1\}$.
Define

$$
\begin{aligned}
& D^{0} f(z)=f(z) \\
& D^{1} f(z)=\frac{1}{z}+3 a_{1} z+4 a_{2} z^{2}+\ldots .=\frac{\left(z^{2} f(z)\right)^{\prime}}{z} \\
& D^{2} f(z)=D\left(D^{\prime} f(z)\right)
\end{aligned}
$$

and for $\mathrm{n}=1,2,3, \ldots \ldots$

$$
D^{n} f(z)=D\left(D^{n-1} f(z)\right)=\frac{1}{z}+\sum_{m=1}^{\infty}(m+2)^{n} a_{m} z^{m}=\frac{\left(z^{2} D^{n-1} f(z)\right)^{\prime}}{z} .
$$

In [9] Uralegaddi and Somanatha obtained a new criteria for meromorphic starlike univalent functions via the basic inclusion relationship $B_{n+1}(\alpha) \subset B_{n}(\alpha),(0 \leq \alpha<1), n \in N_{0}=\{0,1,2, \ldots\}$, where $B_{n}(\alpha)$ is the class consisting of functions in \sum satisfying

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}-2\right\}<-\alpha,|z|<1,(0 \leq \alpha<1), n \in N_{0}=\{0,1,2, \ldots\} \tag{1.2}
\end{equation*}
$$

We note that $B_{0}(\alpha)=\sum^{*}(\alpha)$, is the class of meromorphically starlike functions of order $\alpha \quad(0 \leq \alpha<1)$, and $B_{0}(0)=\sum^{*}$ is the class of meromorphically starlike functions. Let σ_{A} be the subclass of \sum which consists of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+a_{1} z-a_{2} z^{2}+a_{3} z^{3}-\ldots . .=\frac{1}{z}+\sum_{m=1}^{\infty}(-1)^{m-1} a_{m} z^{m}, a_{m} \geq 0 \tag{1.3}
\end{equation*}
$$

Further let $\sigma_{A, n}^{*}(\alpha, \beta)=B_{n}(\alpha, \beta) \cap \sigma_{A}$.
Definition1: Let $f(z)$ be defined by (1.3).Then $f(z) \in \sigma_{A, n}^{*}(\alpha, \beta)$ if and only
$\left|\frac{\frac{D^{n+1} f(z)}{D^{n} f(z)}-1}{\frac{D^{n+1} f(z)}{D^{n} f(z)}+2 \alpha-3}\right|<\beta$ for $|z|<1,0 \leq \alpha<1,0<\beta \leq 1$.

In the present paper coefficient inequalities, distortion theorem and closure theorems for the class $\sigma_{A, n}^{*}(\alpha, \beta)$ are obtained.Techniques used are similar to those Silverman [8].Finally, the class preserving integral operators of the form

$$
\begin{equation*}
F(z)=\frac{c}{z^{c+1}} \int_{0}^{z} t^{c} f(t) d t \quad(c>0) \tag{1.4}
\end{equation*}
$$

II. Coefficient Inequalities

Theorem 1.Let $f(z)=\frac{1}{z}+\sum_{m=1}^{\infty} a_{m} z^{m}$.If
$\sum_{m=1}^{\infty}(m+2)^{n}[(1+\beta) m+(2 \alpha-1) \beta+1]\left|a_{m}\right| \leq 2 \beta(1-\alpha)$
Then $f(z) \in B_{n}(\alpha, \beta)$.
Proof: Suppose that equation (2.1) holds for all admissable values of α, β and n. Consider the expression

$$
\begin{equation*}
H\left(f, f^{\prime}\right)=\left|D^{n+1} f(z)-D^{n} f(z)\right|-\beta\left|D^{n+1} f(z)+(2 \alpha-3) D^{n} f(z)\right| \tag{2.2}
\end{equation*}
$$

Replacing $D^{n} f(z)$ and $D^{n+1} f(z)$ by their series expansions, we have, for $0<|z|=r<1$,

$$
\begin{aligned}
H\left(f, f^{\prime}\right) & =\left|\sum_{m=1}^{\infty}(m+2)^{n}(m+1) a_{m} z^{m+1}\right|-\beta\left|2(1-\alpha)-\sum_{m=1}^{\infty}(m+2)^{n}(m-1+2 \alpha) a_{m} z^{m+1}\right| \\
& \leq \sum_{m=1}^{\infty}(m+2)^{n}(m+1)\left|a_{m}\right| r^{m+1}-\beta\left\{2(1-\alpha)-\sum_{m=1}^{\infty}(m+2)^{n}(m-1+2 \alpha)\left|a_{m}\right| r^{m+1}\right\}
\end{aligned}
$$

.Since the above inequality holds for all $\mathrm{r}(0<\mathrm{r}<1)$, letting $r \rightarrow 1$, we have

$$
\begin{aligned}
H\left(f, f^{\prime}\right) & \leq \sum_{m=1}^{\infty}(m+2)^{n}[(1+\beta) m+(2 \alpha-1) \beta+1]\left|a_{m}\right|-2 \beta(1-\alpha) \\
& \leq 0, \text { by (2.1). }
\end{aligned}
$$

Hence it follows that

$$
\left|\frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right|<\left|\frac{D^{n+1} f(z)}{D^{n} f(z)}+(2 \alpha-3)\right|,
$$

which shows that $f(z) \in B_{n}(\alpha, \beta)$.Hence the Theorem is completely proved. For functions in $\sigma_{A, n}^{*}(\alpha, \beta)$ the converse of the above Theorem is also true.
Theorem 2. A function $f(z)$ in σ_{A} is in $\sigma_{A, n}^{*}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{m=1}^{\infty}(m+2)^{n}[(1+\beta) m+(2 \alpha-1) \beta+1] a_{m} \leq 2 \beta(1-\alpha) \tag{2.3}
\end{equation*}
$$

Proof: In view of Theorem 1, it is sufficient to prove that only if part. Let us assume that $f(z)$ is in $\sigma_{A, n}^{*}(\alpha, \beta)$. Then

$$
\left|\frac{\frac{D^{n+1} f(z)}{D^{n} f(z)}-1}{\frac{D^{n+1} f(z)}{D^{n} f(z)}+2 \alpha-3}\right|=\left|\frac{\sum_{m=1}^{\infty}(-1)^{m-1}(m+2)^{n}(m+1) a_{m} z^{m+1}}{2(1-\alpha)-\sum_{m=1}^{\infty}(-1)^{m-1}(m+2)^{n}(m-1+2 \alpha) a_{m} z^{m+1}}\right|<\beta
$$

Using the fact that $\operatorname{Re}(z) \leq|z|$ for all z,it follows that
$\operatorname{Re}\left\{\frac{\sum_{m=1}^{\infty}(-1)^{m-1}(m+2)^{n}(m+1) a_{m} z^{m+1}}{2(1-\alpha)-\sum_{m=1}^{\infty}(-1)^{m-1}(m+2)^{n}(m-1+2 \alpha) a_{m} z^{m+1}}\right\}<\beta, \quad z \in E$.
Now choose the values of z on the real axis so that $\left(\frac{D^{n+1} f(z)}{D^{n} f(z)}-2\right)$ is real.Upon clearing the denominator in (2.4) and letting $z \rightarrow-1$ through real values, we obtain

$$
\begin{aligned}
& \sum_{m=1}^{\infty}(m+2)^{n}(m+1) a_{m} \leq \beta\left[2(1-\alpha)-\sum_{m=1}^{\infty}(m+2)^{n}(m-1+2 \alpha) a_{m}\right] \\
& \sum_{m=1}^{\infty}(m+2)^{n}\{(1+\beta) m+(2 \alpha-1) \beta+1\} a_{m} \leq 2 \beta(1-\alpha)
\end{aligned}
$$

This completes the proof of the Theorem.
Corollary 1.Let the function $f(z)$ defined by (1.3) be in the class $\sigma_{A, n}^{*}(\alpha, \beta)$.Then

$$
\begin{equation*}
a_{m} \leq \frac{2 \beta(1-\alpha)}{(m+2)^{n}[(1+\beta) m+(2 \alpha-1)+1]}, \mathrm{m}=1,2,3, \ldots \ldots \tag{2.5}
\end{equation*}
$$

Equality holds for the function of the form

$$
\begin{equation*}
f_{m}(z)=\frac{1}{z}+(-1)^{m-1} \frac{2 \beta(1-\alpha)}{(m+2)^{n}[(1+\beta) m+(2 \alpha-1)+1]} z^{m} \tag{2.6}
\end{equation*}
$$

III. Distortion Properties and Radius of Convexity

Theorem 3. Let the function $f(z)$ defined by (1.3) be in the class $\sigma_{A, n}^{*}(\alpha, \beta)$.Then for $0<|z|=r<1$,

$$
\begin{equation*}
\frac{1}{r}-\frac{\beta(1-\alpha)}{3^{n}(1+\alpha \beta)} r \leq|f(z)| \leq \frac{1}{r}+\frac{\beta(1-\alpha)}{3^{n}(1+\alpha \beta)} r \tag{3.1}
\end{equation*}
$$

with equality for the function

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{\beta(1-\alpha)}{3^{n}(1+\alpha \beta)} z, \quad \text { at } \mathrm{z}=\mathrm{r}, \text { ir } \tag{3.2}
\end{equation*}
$$

Proof: Suppose $f(z)$ is in $\sigma_{A, n}^{*}(\alpha, \beta)$. In view of Theorem 2, we have

$$
\begin{equation*}
\sum_{m=1}^{\infty} a_{m} \leq \frac{\beta(1-\alpha)}{3^{n}(1+\alpha \beta)} \tag{3.3}
\end{equation*}
$$

Then for $0<|z|=r<1$,

$$
\begin{aligned}
&|f(z)|=\left|\frac{1}{z}+\sum_{m=1}^{\infty}(-1)^{m-1} a_{m} z^{m}\right| \\
& \leq\left|\frac{1}{z}\right|+\sum_{m=1}^{\infty} a_{m}|z|^{m} \leq \frac{1}{r}+r \sum_{m=1}^{\infty} a_{m} \\
& \leq \frac{1}{r}+\frac{\beta(1-\alpha)}{3^{n}(1+\alpha \beta)} r
\end{aligned}
$$

Also,

$$
\begin{aligned}
|f(z)| & =\left|\frac{1}{z}+\sum_{m=1}^{\infty}(-1)^{m-1} a_{m} z^{m}\right| \\
& \geq\left|\frac{1}{z}\right|-\sum_{m=1}^{\infty} a_{m}|z|^{m} \\
& \geq \frac{1}{r}-r \sum_{m=1}^{\infty} a_{m} \\
& \geq \frac{1}{r}-\frac{\beta(1-\alpha)}{3^{n}(1+\alpha \beta)} r
\end{aligned}
$$

which gives the left hand side inequality of (3.1). This completes the proof. Putting $n=0$ and $\beta=1$ in the above Theorem, we have the following.
Corollary 2.Let the function $f(z)$ defined by (1.3) be in the class $\sigma_{A, 0}^{*}(\alpha, 1)=\sigma_{A}^{*}(\alpha)$.Then for
$0<|z|=r<1$,

$$
\frac{1}{r}-\frac{(1-\alpha)}{(1+\alpha)} r \leq|f(z)| \leq \frac{1}{r}+\frac{(1-\alpha)}{(1+\alpha)} r
$$

The result is sharp.
We observe that our result in corollary 2 improves the result of Uralegaddi and Ganigi[10]
Theorem 4. Let the function $f(z)$ defined by (1.3) be in the class $\sigma_{A, n}^{*}(\alpha, \beta)$.Then for $0<|z|=r<1$,

$$
\frac{1}{r^{2}}-\frac{\beta(1-\alpha)}{3^{n}(1+\alpha \beta)} r \leq\left|f^{\prime}(z)\right| \leq \frac{1}{r^{2}}+\frac{\beta(1-\alpha)}{3^{n}(1+\alpha \beta)} r .
$$

The result is sharp,the extremal function being of the form (3.2)
Proof: From Theorem 2, we have
$3^{n}(1+\alpha \beta) \sum_{m=1}^{\infty} m a_{m} \leq \sum_{m=1}^{\infty}(m+2)^{n}\{(1+\beta) m+(2 \alpha-1) \beta+1\} a_{m} \leq \beta(1-\alpha)$
which evidently yields

$$
\sum_{m=1}^{\infty} m a_{m} \leq \frac{\beta(1-\alpha)}{3^{n}(1+\alpha \beta)}
$$

Consequently, we obtain

$$
\begin{aligned}
\left|f^{\prime}(z)\right| \leq \frac{1}{r^{2}}+\sum_{m=1}^{\infty} m a_{m} r^{m-1} & \leq \frac{1}{r^{2}}+\sum_{m=1}^{\infty} m a_{m} \\
& \leq \frac{1}{r^{2}}+\frac{\beta(1-\alpha)}{3^{n}(1+\alpha \beta)}
\end{aligned}
$$

Also,

$$
\left|f^{\prime}(z)\right| \geq \frac{1}{r^{2}}-\sum_{m=1}^{\infty} m a_{m} r^{m-1} \geq \frac{1}{r^{2}}-\sum_{m=1}^{\infty} m a_{m}
$$

On A Subclass Of Meromorphic Starlike Univalent Functions With Alternating Coefficients $\geq \frac{1}{r^{2}}-\frac{\beta(1-\alpha)}{3^{n}(1+\alpha \beta)}$

This completes the proof.

References

[1] F. M. Al - Oboudi, On univalent functions defined by a generalized salagean operator, Internat J. Math. Math. Sci., 27(2004), 1429-1436.
[2] M. K. Aouf and H. M. Hossen, New criteria for meromorphic p - valent starlike functions, Tsukuba J. Math. 17(2)(1993), 481486.
[3] M. K. Aouf and H. E. Darwish, Meromorphic starlike univalent functions with alternating coefficients, Utilities Math. 47(1995), 137-144.
[4] M. Darus, S. B. Joshi and N. D. Sangle, Meromorphic starlike functions with alternating and missing coefficients, General Mathematics (2006), 113-126.
[5] H. E. Darwish, Meromorphic p-valent starlike functions with negative coefficients, Indian. J. Pure Appl. Math. 33(7), 2002, 967976.
[6] M. L. Mogra, T. R. Reddy and O. P. Juneja, Meromorphic univalent functions with positive coefficients, Bull. Austral. Math. Soc, 32(1985) 161-176.
[7] T. Ram Reddy and P. Thirupathi Reddy, Meromorphic p-valent
[8] starlike functions with alternating coefficients, Bull. Pure Appl.Math. Vol 3,(2009),254-262.
[9] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1975), 109-116.
[10] B. A. Uralegeddi and C. Somanatha, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc. 43(1991), 137-140.
[11] B. A. Uralegaddi and M. D. Ganigi, Meromorphic starlike functions
[12] with alternating coefficients, Rend. Math. 11(7) (1991), 441-446.

