Note on Intuitionistic N-Closed Sets

¹M. Lellis Thivagar & ²M. Anbuchelvi

¹School Of Mathematics Madurai Kamaraj University, Madurai-625021.Tamil Nadu, INDIA .²Department of Mathematics, V.V.Vanniaperumal College For Women, Virudhunar-626001. Tamil Nadu, INDIA.

Abstract: In this paper we introduce and investigate intuitionistic N-closed sets and Intuitionistic almost regular space in a intuitionistic topological spaces.

Key words and Phrases: Int (A), cl (A), intuitionistic almost regular spaces, intuitionistic N -closed sets., AMS subject classification 2010:57D05.

I.

Introduction

First, D.Coker et al [2] introduced intuitionistic fuzzy topological spaces, intuitionistic topological spaces and the concept of Compactness on Intuitionistic topological spaces. In this paper we introduce and investigate intuitionistic Almost regular spaces and intuitionistic N-closed sets on intuitionistic topological spaces. Also we investigate their properties via intuitionistic $T_2(i)$ -spaces.

II. Preliminaries

Throughout this paper $(\tilde{X}, \tilde{\tau})$ (or briefly \tilde{X}) represent intuitionistic topological space on which no separation axioms are assumed unless explicitly stated.

Let us recall the following definitions, which are useful in the sequel.

Definition II.1. [1] Let X be a nonempty set. An intuitionistic set A is an object of the form $A = (A_1, A_2)$ where A_1 and A_2 are disjoint subsets of X. The set A_1 is the set of all members of A and A_2 is the set of all non-members of A.

Definition II.2. [1] Let X be a nonempty set, $a \in X$ and $A = (A_1, A_2)$ be an intuitionistic subset of X. Intuitionistic set $\tilde{a} = (\{a\}, \{a\}^c)$ is called an intuitionistic point in X. The intuitionistic point $\tilde{a} \in A$ iff $a \in A_1$.

Definition II.3. [1] Let X be a nonempty set. $A = (A_1, A_2)$, $B = (B_1, B_2)$ and $\{A_i = (A_i^{(1)}, A_i^{(2)})/i \in I\}$ are intuitionistic subsets of X. Then

- (i) $A \subseteq B$ iff $A_1 \subseteq B_1$ and $B_2 \subseteq A_2$.
- (ii) A = B iff $A \subseteq B$ and $B \subseteq A$.

(iii)
$$A^c = (A_2, A_1).$$

(iv) $\bigcap A_i = (\bigcap A_i^{(1)}, \bigcup A_i^{(2)}).$
(v) $\bigcup A_i = (\bigcup A_i^{(1)}, \bigcap A_i^{(2)}).$

(vi)
$$\emptyset = (\emptyset, X)$$
.

(vii) $\widetilde{X} = (X, \emptyset)$.

Definition II.4. [2] An intuitionistic topology on a nonempty set X is a family $\tilde{\tau}$ of intuitionistic sets in X containing $\overline{\Phi}$, \tilde{X} and closed under finite infima and arbitrary suprema.

Then the pair $(\tilde{X}, \tilde{\tau})$ is called an intuitionistic topological space. Every member of $\tilde{\tau}$ is known as an intuitionistic open set in \tilde{X} . The complement A^c of an intuitionistic open set A is called intuitionistic closed set in \tilde{X} .

Definition II.5. [2] Let X be a nonempty set and let A be an intuitionistic subset of X. Then the intuitionistic

interior and intuitionistic closure of A is defined by

- (i). $int(A) = \bigcup \{ U : U \text{ is an intuitionistic open set of } \widetilde{X} \text{ and } U \subseteq A \}.$
- (ii). Cl (A) = $\bigcap \{F : F \text{ is an intutionistic closed set of } \widetilde{X} \text{ and } A \subseteq F \}.$

For any intutionistic subset A of X, $\inf (A^c) = [cl(A)]^c$ and $cl(A^c) = [\inf (A)]^c$.

Definition II.6.[2] Let $f: (\tilde{X}, \tilde{\tau}) \rightarrow (\tilde{Y}, \tilde{\sigma})$ be a function .If $A = (A_1, A_2)$ is an intutionistic subset of X, then the image of A under f, denoted by f(A), is an intutionistic subset of Y and defined by $f(A) = (f(A_1), f(A_2))$, where $f(A_2) = (f((A_2)^c))^c$.

Definition II.7.[2] Let $f: (\tilde{X}, \tilde{\tau}) \rightarrow (\tilde{Y}, \tilde{\sigma})$ be a function. If $B = (B_1, B_2)$ is an intutionistic subset of Y, then the pre-image of B under f, denoted by $f^1(B)$ is an intutionistic subset of X and defined by $f^1(B) = (f^1(B_1), f^1(B_2))$.

Definition II.8.[2] Let $(\widetilde{X}, \widetilde{\tau})$ be a intutionistic topological space.

(i) If a family $\{G_i = \langle G_i^1, G_i^2 \rangle : i \in J\}$ of intutionistic open sets in X satisfies the condition $\bigcup_{i \in J} G_i = X$,

then it is called an **intutionistic open cover** of \widetilde{X} . A finite subfamily of intutionistic open cover $\{G_i = \langle G_i^1, G_i^2 \rangle : i \in J\}$ of \widetilde{X} , which is also an open cover of \widetilde{X} , is called an **intutionistic finite sub cover** of \widetilde{X} . (ii) A family $\{F_i = \langle F_i^1, F_i^2 \rangle : i \in J\}$ of intuitionistic closed sets in X satisfies the finite intersection property

(ii) A family $\{F_i = \langle F_i^i, F_i^2 \rangle : i \in J\}$ of intuitionistic closed sets in X satisfies the finite intersection property (briefly FIP) iff every finite subfamily $\{F_i : i = 1, 2, ..., N\}$ of $\{F_i = \langle F_i^1, F_i^2 \rangle : i \in J\}$ satisfies the

condition
$$\bigcap_{i=1}^{n} F_i \neq \Phi$$
.

Definition II.9.[2] An intutionistic topological space $(\tilde{X}, \tilde{\tau})$ is said to be intutionistic compact iff every intutionistic open cover $\{G_i = \langle G_i^1, G_i^2 \rangle : i \in J\}$ of \tilde{X} has a intutionistic finite subcover.

Definition II.10.[2]An intutionistic topological space $(\tilde{X}, \tilde{\tau})$ is said to be intutionistic nearly compact iff every $\{G_i = \langle G_i^1, G_i^2 \rangle : i \in J\}$ of \tilde{X} , there exists a finite set J_0 of J such that $\bigcup_{i \in I} \operatorname{int}(CI(G_i)) = X$.

III. Intuitionistic *N* -Closed Sets.

Proposition III.1. [2] Let $(\tilde{X}, \tilde{\tau})$ be a intuitionistic topological space.

(i). If a family $\{G_i = \langle G_i^1, G_i^2 \rangle : i \in J\}$ of intuitionistic open sets in $(\tilde{X}, \tilde{\tau})$ satisfies the condition $A \subseteq \bigcup_i G_i$ then it is an **intuitionistic open cover** of A.

(ii).Let $\{G_i = \langle G_i^1, G_i^2 \rangle : i \in J\}$ be a family of intuitionistic open sets in $(\tilde{X}, \tilde{\tau})$, which covers A. If there exists a finite subset J_0 of J such that $A \subseteq \bigcup_{i \in J_0} G_i$ then $\{G_i = \langle G_i^1, G_i^2 \rangle : i \in J_0\}$ is a **intuitionistic finite** subsequence of A.

subcover of A.

Definition III.2. An intuitionistic subset A in a intuitionistic topological space $(\tilde{X}, \tilde{\tau})$ is a intuitionistic N -

closed in $(\tilde{X}, \tilde{\tau})$ iff for each intuitionistic open cover $\{G_i = \langle G_i^1, G_i^2 \rangle : i \in J\}$ of A, there exists a finite set J_0 of J such that $A \subseteq \bigcup_{i \in J_0} \inf(cl(G_i))$.

Example III.3. Let X = P and $\tilde{\tau}$ is as follows.(i) $\tilde{\emptyset}$, (ii) \tilde{P} , (iii) $< \cup (a_i, b_i), (-\infty, c] >$ where $a_i, b_i \in P$ and $\{a_i : i \in J\}$ is bounded below and $c \in inf\{a_i : i \in J\}$. (iv) $\left\langle \bigcup (a_i, b_i), \Phi \right\rangle$ where $a_i, b_i \in P$ and $\{a_i : i \in J\}$ is not bounded below. $A = < [o, 1], (-\infty, 0) >$ is an intuitionistic N-closed set in $(\tilde{X}, \tilde{\tau})$. **Definition III.4.** An intuitionistic topological space $(\tilde{X}, \tilde{\tau})$ is said to be intuitionistic almost regular if for each intuitionistic regular closed set A and any intuitionistic point \tilde{x} not in A, there exists disjoint intuitionistic open sets U and V such that $A \subseteq U$ and $\tilde{x} \in V$.

The following theorem characterizes intuitionistic N-Closed spaces.

Theorem III.5. An intuitionistic subset A of a intuitionistic topological space $(\tilde{X}, \tilde{\tau})$ is intuitionistic N-closed if and only if for each intuitionistic regular open cover of A has a intuitionistic finite sub cover.

Proof. Necessity- Let A be a intuitionistic N -closed set in a intuitionistic topological space $(\tilde{X}, \tilde{\tau})$ and $\{G_i : i \in J\}$ be any intuitionistic regular open cover of A. Therefore, $A \subseteq \bigcup_{i \in J} G_i = \bigcup_{i \in J} \operatorname{int}(cl(G_i))$ and hence $\{\operatorname{int}(cl(G_i)) : i \in J\}$ is an intuitionistic open cover of A. By hypothesis, there exists a finite set J_0 of J such that $A \subseteq \bigcup_{i \in J_0} \operatorname{int}(cl(G_i))) \subseteq \bigcup_{i \in J_0} \operatorname{int}(cl(G_i)) = \bigcup_{i \in J_0} G_i$. Thus,

$$A \subseteq \bigcup_{i \in J_0} \inf(cl(G_i)).$$

Sufficiency- Suppose that $\{G_i : i \in J\}$ be an open cover of A.By theorem 3.5 [3], $\inf(cl(G_i))$

is intuitionistic regular open set for each i.Also, $\{\inf(cl(G_i)): i \in J\}$ is an intuitionistic regular open cover of A.By hypothesis, there existys a finite set J_0 of J such that $A \subseteq \bigcup_{i \in J_0} \inf(cl(G_i))$. Therefore. A is intuitionistic N-closed set.

Theorem III.6. An intuitionistic space $(\tilde{X}, \tilde{\tau})$ is nearly compact if and only if it is intuitionistic N -closed. **Proof.** It follows from the definitions.

Theorem III.7. In an intuitionistic topological space $(\tilde{X}, \tilde{\tau})$, the intersection of a intuitionistic N -closed set and a intuitionistic regular closed set is always a intuitionistic N -closed set.

Proof. Let A be any intuitionistic N -closed and B be intuitionistic regular closed subset of a intuitionistic topological space $(\tilde{X}, \tilde{\tau})$. Suppose that $\{G_i : i \in J\}$ is any intuitonistic regular open cover of $A \cap B$. Since $A = (A \setminus B) \bigcup (A \cap B)$, we have $A \subseteq (X \setminus B) \bigcup_{i \in J} G_i$. Therefore,

 $\{(X \setminus B), \bigcup \{G_i : i \in J\}\}$ is a intuitionistic regular open cover of a intuitionistic N -closed set A in

 $(\widetilde{X}, \widetilde{\tau})$. By hypothesis, there exists a finite subset J_0 of J such that $A \subseteq (\bigcup_{i \in J_0} G_i) \bigcup (X \setminus B)$. Therefore

, there exists a finite subset J_0 of J such that $A \cap B \subseteq \bigcup_{i \in J_0} G_i$. Thus, $A \cap B$ is a intuitionistic N -closed set

 $\operatorname{in}(\widetilde{X},\widetilde{\tau})$.

Theorem III.8. Let A and B be intuitionistic subsets of a intuitionistic topological space $(\tilde{X}, \tilde{\tau})$ such that $B \subseteq A$. Then the following statements hold.

(i). If A is intuitionistic N-closed and B is intuitionistic regular closed set in $(\tilde{X}, \tilde{\tau})$, then B is intuitionistic N-closed set in $(\tilde{X}, \tilde{\tau})$.

(ii). If A is intuitionistic N-closed and B is intuitionistic regular open set in $(\tilde{X}, \tilde{\tau})$, then $A \setminus B$ is intuitionistic N-closed set in $(\tilde{X}, \tilde{\tau})$.

(iii). If A is intuitionistic regular closed and X is intuitionistic nearly compact, then A is intuitionistic N - closed set in \tilde{X} .

proof-(i).Since $B \subseteq A$, we have $A \cap B = B$. Thus, by theorem III.7, B is intuitionistic N-closed set in $(\tilde{X}, \tilde{\tau})$.

(ii).Let A be a intuitionistic N-closed and B be intuitionistic regular open subsets of a intuitionistic

topological space $(\tilde{X}, \tilde{\tau})$. Suppose that $\{G_i : i \in J\}$ is any intuitionistic regular open cover of $A \setminus B$. Since $A = (A \setminus B) \bigcup (A \cap B) = (A \setminus B) \bigcup B$, we have $A \subseteq (\bigcup_{i \in J} G_i) \bigcup B$. Therefore, $\{G_i : i \in J\} \cup B$ is a intuitionistic regular open cover of intuitionistic N-closed set A in $(\tilde{X}, \tilde{\tau})$. By hypothesis, there exists a finite subset J_0 of J such that $A \setminus B \subseteq \bigcup_{i \in J_0} G_i$. Thus, $A \setminus B$ is a intuitionistic N-closed set.

(iii).By theorem III.6, $(\tilde{X}, \tilde{\tau})$ is intuitionistic N-closed. Since $A \subseteq X$, we have $A \bigcap X = A$. By (i), A is intuitionistic N-closed set in $(\tilde{X}, \tilde{\tau})$.

Definition III.9. A function $f: (\tilde{X}, \tilde{\tau}) \to (\tilde{Y}, \tilde{\sigma})$ is said to be intuitionistic almost continuous iff $f^{-1}(V)$ is intuitionistic open in $(\tilde{X}, \tilde{\tau})$ for every intuitionistic regular open set V of $(\tilde{Y}, \tilde{\sigma})$.

Theorem III.10. Let $f: (\tilde{X}, \tilde{\tau}) \to (\tilde{Y}, \tilde{\sigma})$ be a intuitionistic almost continuous function. Then any intuitionistic almost continuous image of a intuitionistic compact set in $(\tilde{X}, \tilde{\tau})$ is intuitionistic N-closed set in a $(\tilde{Y}, \tilde{\sigma})$.

Proof. Given that $f: (\tilde{X}, \tilde{\tau}) \to (\tilde{Y}, \tilde{\sigma})$ is intuitionistic almost continuous.Let A be intuitionistic compact set of $(\tilde{X}, \tilde{\tau})$. Let $\{G_i : i \in J\}$ be any intuitionistic regular open cover of f(A). Since f is intuitionistic almost continuous, for each $i \in J$, $f^{-1}(G_i)$ is intuitionistic open in $(\tilde{X}, \tilde{\tau})$.Also,

 $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}\left(\bigcup_{i \in J} G_i\right) = \bigcup_{i \in J} f^{-1}(G_i). \text{ Therefore } \{f^{-1}(G_i) : i \in J\} \text{ is a intuitionistic open cover of a intuitionistic compact set } A \text{ .Therefore, there exists a finite number of intuitionistic regular open sets } G_1, G_2, \dots G_n \text{ in } (\tilde{X}, \tilde{\tau}) \text{ such that } A \subseteq \bigcup_{i=1}^{i=n} f^{-1}(G_i).$

Thus, $f(A) \subseteq f\left(\bigcup_{i=1}^{n} f^{-1}(G_i)\right) = \left(\bigcup_{i=1}^{n} f(f^{-1}(G_i))\right) \subseteq \bigcup_{i=1}^{n} G_i$. Thus, f(A) is intuitionistic N -closed set in $(\tilde{Y}, \tilde{\sigma})$.

IV. Between intuitionistic *N* -Closed Sets and T_2(i).

Definition IV.1.[6] A intuitionistic topological space is said to be $T_2(i)$ iff for all distinct pair of points $x, y \in X$, there exists a pair of disjoint intuitionistic open sets U and V such that $\tilde{x} \in U$ and $\tilde{y} \in V$.

Proposition IV.2. In a intuitionistic topological space $(\tilde{X}, \tilde{\tau})$, the intuitionistic sets U and A are such that $U \cap A = \Phi$ if and only if $A \subseteq U^c$. **Proof.** Obvious.

Proposition IV.3.Let A be any intuitionistic subset of a intuitionistic topological space $(\tilde{X}, \tilde{\tau})$ and \tilde{x} be any intuitionistic point of \overline{X} . Then $\tilde{x} \in Cl(A)$ iff every intuitionistic open set containing \tilde{x} , intersect A.

Proof. Necessity- Let $x \in Cl(A)$ and let U be any intuitionistic open set containing \tilde{x} such that $U \cap A = \Phi$ Then by theorem 4.2, $A \subseteq U^c$ and hence U^c is intuitionistic closed set containing A. But Cl(A) is the smallest intuitionistic closed set containing A. Therefore $Cl(A) \subseteq U^c$ Now $\tilde{x} \notin U^c$ implies that $\tilde{x} \notin Cl(A)$, a contradiction.

Sufficiency- Suppose that $\tilde{x} \notin cl(A)$. By definition, there exists an intuitionistic closed set F containing A does not containing \tilde{x} . Thus $\tilde{x} \in F^c$ such that $F^c \subseteq A^c$ and hence $F^c \cap A = \Phi$. Now there exists a

intuitionistic open set F^c containing \tilde{x} , does not intersect A, a contradiction. Therefore $\tilde{x} \in cl(A)$. **Lemma IV.4.** Let A and B be any two intuitionistic sets in intuitionistic topological space $(\tilde{X}, \tilde{\tau})$. Then $cl(A \cap B) \subseteq cl(A) \cap cl(B)$.

Proof. [2] By proposition 3.16, $A \subseteq cl(A)$ and $B \subseteq cl(B)$. Therefore, $A \cap B \subseteq cl(A) \cap cl(B)$ and . $cl(A) \cap cl(B)$ is a intuitionistic closed set containing $A \cap B$. But $cl(A \cap B)$ is the smallest intuitionistic closed set containing $A \cap B$. But $cl(A \cap B)$ is the smallest intuitionistic closed set containing $A \cap B$. Thus, $cl(A \cap B) \subseteq cl(A) \cap cl(B)$.

Remark IV.5. The reversible inclusion is not true in general from the following example.

ExampleIV.6.Let $X = \{a, b\}$ and $\tilde{\tau} = \{\tilde{\Phi}, \tilde{X}, <\{a, \emptyset\} >, <\{b, \emptyset\} >, <\{a, b\} >, <\emptyset, \emptyset >, <\emptyset, b>\}$. If $A = <\emptyset, b>$ and $B = <\{b, a\} >$, then $A \cap B = \tilde{\Phi} = c\tilde{l}(A \cap B)$ whereas $cl(A) \cap cl(B) = B$.

Theorem IV.7. Let $(\tilde{X}, \tilde{\tau})$ be a $T_2(i)$ space. Then for every intuitionistic N-closed set A in $(\tilde{X}, \tilde{\tau})$ and every point $\tilde{y} \in \tilde{X} \setminus A$, there exists a pair of disjoint intuitionistic regularly open sets U and V such that $\tilde{y} \in U$ and $A \subseteq V$.

Proof. Given that is a $T_2(i)$ space and A is any intuitionistic N -closed set and $\tilde{y} \in \tilde{X} \setminus A$, is an arbitrary intuitionistic point in $(\tilde{X}, \tilde{\tau})$. Let $\tilde{x} \in A$ be arbitrary. Then $\tilde{x} \neq \tilde{y}$. By hypothesis, there exists disjoint intuitionistic open sets $U_{\tilde{x}}$ and $V_{\tilde{x}}$ such that $\tilde{x} \in V_{\tilde{x}}$ and $\tilde{y} \in U_{\tilde{x}}$. By theorem 3.5 [3], $\operatorname{int}(cl(V_{\tilde{x}}))$ is an intuitionistic regular open set in $(\tilde{X}, \tilde{\tau})$. Hence $\left\{\operatorname{int}(cl(V_{\tilde{x}})): \tilde{x} \in A\right\}$ is an intuitionistic regular open cover of a intuitionistic N -closed set A. Therefore, there exists a finite number of intuitionistic points $\left\{\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n\right\}$ in A such that $A \subseteq \bigcup_{i=1}^n \operatorname{int}(cl(V_{\tilde{x}_i}))$. Let $U_0 = \bigcap_{i=1}^n U_{\tilde{x}_i}$ and $V_0 = \bigcup_{i=1}^n \operatorname{int}(cl(V_{\tilde{x}_i}))$ then U_0 and V_0 are intuitionistic open sets such that $\tilde{y} \in U_0$ and $A \subseteq V_0$. To prove $U_0 \cap V_0 = \emptyset$, we take a point $\tilde{z} \in U_0 \cap V_0$. Then $\tilde{z} \in U_{\tilde{x}_i}$ and $\tilde{z} \in \operatorname{int}(cl)(V_{\tilde{x}_i}) \subseteq cl(V_{\tilde{x}_i})$ for some i. By Proposition IV.3, every intuitionistic open subset containing \tilde{z} intersects $V_{\tilde{x}_i}$. Therefore $U_{\tilde{x}_i} \cap V_{\tilde{x}_i} \neq \tilde{\emptyset}$ for some i, a contradiction. Therefore $U_0 \cap V_0 = \tilde{\emptyset}$. Let $U = \operatorname{int}(cl)(U_0)$ and $V = \operatorname{int}(cl)(V_0)$. Then U and V are a pair of disjoint intuitionistic regulary open sets such that $\tilde{y} \in U$ and $A \subseteq V$.

Corollary IV.8. Every intuitionistic nearly compact, $T_2(i)$ space is almost regular.

Proof. By (iii) of theorem III.8, every intuitionistic regular closed set of a intuitionistic nearly compact space is intuitionistic N-closed and hence by theorem 4.7, $(\tilde{X}, \tilde{\tau})$ is intuitionistic almost regular space.

Lemma IV.9. In a intuitionistic topological space $(\tilde{X}, \tilde{\tau})$, intersection of any two intuitionistic regular open sets is a intuitionistic regular open set in $(\tilde{X}, \tilde{\tau})$.

Proof. Let A and B be any two intuitionistic regular open sets in a intuitionistic space $(\tilde{X}, \tilde{\tau})$.

Therefore, they are intuitionistic open sets in $(\widetilde{X}, \widetilde{\tau})$ and so their intersections.

Thus, $A \cap B = \operatorname{int}(A \cap B) \subseteq \operatorname{int}(cl(A \cap B))$. On the other hand, by lemma IV.4, $cl(A \cap B) \subseteq cl(A) \cap cl(B)$. Therefore, $\operatorname{int}(cl(A \cap B)) \subseteq \operatorname{int}(cl(A) \cap cl(B)) = \operatorname{int}(cl(A)) \cap \operatorname{int}(cl(B)) = A \cap B$.

Hence $\inf_{i=1}^{i=1} (cl(A \cap B)) = A \cap B$. Thus, intersection of any two intuitionistic regular open sets is a intuitionistic regular open set in $(\tilde{X}, \tilde{\tau})$.

Theorem IV.10. Let $(\tilde{X}, \tilde{\tau})$ be a $T_2(i)$ space. Then for any two disjoint intuitionistic N-closed sets A and B, there exists a pair of disjoint intuitionistic regular open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Proof. Given that A and B are any two disjoint intuitionistic N -closed sets in $(\tilde{X}, \tilde{\tau})$. Let \tilde{y} be any point of B. Then $\tilde{y} \in X \setminus A$. By theorem IV.7, there exists disjoint intuitionistic regularly open sets $U_{\tilde{y}}$ and $V_{\tilde{y}}$ such that $\tilde{y} \in V_{\tilde{y}}$ and $A \subseteq U_{\tilde{y}}$. Then the family $\{V_{\tilde{y}} : \tilde{y} \in B\}$ is an intuitionistic regular open cover for a intuitionistic N -closed set B in $(\tilde{X}, \tilde{\tau})$. Therefore, there exists a finite number of intuitionistic points $\tilde{y}_1, \tilde{y}_2, \dots, \tilde{y}_n$ in B such that $B \subseteq \bigcup_{i=1}^n V_{\tilde{y}_i}$. Let $U = \bigcap_{i=1}^n U_{\tilde{y}_i}$ and $V_0 = \bigcup_{i=1}^n V_{\tilde{y}_i}$. Then $A \subseteq U$ and $B \subseteq V_0$ such that $U \cap V_0 = \tilde{\emptyset}$. If we define $V = \operatorname{Int}(Cl)(V_0)$, then U and V are disjoint regular open sets such that $A \subseteq U$ and $B \subseteq V$.

Theorem IV.11. Every intuitionistic singleton set $\{\tilde{x}\}$ of $(\tilde{X}, \tilde{\tau})$ is intuitionistic N-closed subset in $(\tilde{X}, \tilde{\tau})$. **Proof.** Let $\{\tilde{x}\}$ be any intuitionistic point of $(\tilde{X}, \tilde{\tau})$ and suppose that $\{G_i \in \tilde{\tau} : i \in J\}$ is any intuitionistic open cover of $\{\tilde{x}\}$. Therefore $\{\tilde{x}\} \subseteq \bigcup_{i \in J} G_i$ and hence $\{\tilde{x}\} \in G_i$ for some *i*. Thus, $\{\tilde{x}\} \in G_i = \operatorname{int}(G_i) \subseteq \operatorname{int}(cl(G_i))$ for some *i* and hence $\{\tilde{x}\}$ is intuitionistic N-closed subset of $(\tilde{X}, \tilde{\tau})$.

Corollary IV.12. A intuitionistic topological space $(\tilde{X}, \tilde{\tau})$ is said to be $T_2(i)$ iff for any two disjoint intuitionistic N-closed sets A and B, there exists a pair of disjoint intuitionistic regular open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Proof. Necessity-It follows from theorem 4.10.

Sufficiency- Let $\{\tilde{x}\}$ and $\{\tilde{y}\}$ be any two intuitionistic points of $(\tilde{X}, \tilde{\tau})$ such that $\{\tilde{x}\} \neq \{\tilde{y}\}$. By theorem 4.11, $\{\tilde{x}\}$ and $\{\tilde{y}\}$ are two disjoint intuitionistic N-closed subsets of $(\tilde{X}, \tilde{\tau})$. By hypothesis, there exists disjoint intuitionistic regular open sets U and V in $(\tilde{X}, \tilde{\tau})$ such that $\{\tilde{x}\} \subseteq U$ and $\{\tilde{y}\} \subseteq V$. Thus $(\tilde{X}, \tilde{\tau})$ is $T_2(i)$.

Theorem IV.13. In a intuitionistic topological space the following statements are equivalent.

(i). $(X, \tilde{\tau})$ is intuitionistic almost regular space.

(ii). For each intuitionistic point $\tilde{x} \in \tilde{X}$, and each intuitionistic regular-open set V in $(\tilde{X}, \tilde{\tau})$ containing \tilde{x} , there exists a intuitionistic regular open set U in such that $\tilde{x} \in U \subseteq cl(U) \subseteq V$.

(iii). For each intuitionistic point $\tilde{x} \in \tilde{X}$, and each intuitionistic open set U in $(\tilde{X}, \tilde{\tau})$ containing \tilde{x} , there exists a intuitionistic regular open set V in $(\tilde{X}, \tilde{\tau})$ such that $\tilde{x} \in V \subseteq cl(V) \subseteq int(cl(U))$.

(iv). For each intuitionistic point $\tilde{x} \in \tilde{X}$, and each intuitionistic open set U in $(\tilde{X}, \tilde{\tau})$ containing \tilde{x} , there exists a intuitionistic open set V in such that $\tilde{x} \in V \subseteq Cl(V) \subseteq int(Cl(U))$.

(v). For every intuitionistic regular-closed set A in $(\tilde{X}, \tilde{\tau})$ and each intuitionistic point $\tilde{x} \notin A$, there exists intuitionistic open sets U and V such that $\tilde{x} \in U, A \subseteq V$ and $cl(U) \cap cl(V) = \tilde{\Phi}$.

proof.(i) \Rightarrow (ii).Let $\tilde{x} \in \tilde{X}$, be any intuitionistic point and V be any intuitionistic regular-open set in containing \tilde{x} . Then V^c is an intuitionistic regular-closed set in $(\tilde{X}, \tilde{\tau})$ does not containing \tilde{x} . By hypothesis, there exists disjoint intuitionistic open sets U_1 and U_2 in $(\tilde{X}, \tilde{\tau})$ such that $\{\tilde{x}\} \subseteq U_1$ and $V^c \subseteq U_2$. Therefore, $cl(U_1) \cap U_2 = \tilde{\Phi}$ implies that $cl(U_1) \subseteq U_2^c \subseteq V$.

Moreover, $U_1 = \operatorname{int}(U_1) \subseteq \operatorname{int}(Cl(U_1)) \subseteq Cl(U_1) \subseteq V$. If we define $U = \operatorname{int}(Cl(U_1))$, then U is a intuitionistic regular-open set such that $\tilde{x} \in U \subseteq Cl(U) \subseteq V$.

(ii) \Rightarrow (iii).Let \tilde{x} be any intuitionistic point in $(\tilde{X}, \tilde{\tau})$ and U be any intuitionistic open set in $(\tilde{X}, \tilde{\tau})$ containing \tilde{x} . By theorem 3.5 [3], $\inf(cl(U))$ is intuitionistic regular open set in $(\tilde{X}, \tilde{\tau})$ containing \tilde{x} . By hypothesis, there exists a intuitionistic regular open set V in such that $\tilde{x} \in V \subseteq cl(V) \subseteq \inf(cl(U))$.

(iii) \Rightarrow (iv). Obvious.

(iv) \Rightarrow (v). Let \tilde{x} be any intuitionistic point in $(\tilde{X}, \tilde{\tau})$ and A be any intuitionistic regular closed set in $(\tilde{X}, \tilde{\tau})$ does not containing \tilde{x} . Then A^c is a intuitionistic regular open set in $(\tilde{X}, \tilde{\tau})$ and hence intuitionistic open set in $(\tilde{X}, \tilde{\tau})$ containing \tilde{x} . By hypothesis, there exists an intuitionistic open set V_1 containing \tilde{x} such that $V_1 \subseteq cl(V_1) \subseteq int(cl(A^c)) = A^c$. Therefore, $A \subseteq [cl(V_1)]^c$. In a similar way, if we apply hypothesis to the intuitionistic open set V_1 , then there exists an intuitionistic open set V_2 containing \tilde{x} such that $cl(V_2) \subseteq int(cl(V_1))$. If we define $U = V_2$ and $V = [cl(V_1)]^c$, then U and V are intuitionistic open sets such that $\tilde{x} \in U, A \subseteq V$ and $cl(U) \cap cl(V) = \tilde{\Phi}$.

(v) \Rightarrow (i). Let \tilde{x} be any intuitionistic point in $(\tilde{X}, \tilde{\tau})$ and A be any intuitionistic regular closed set does not containing \tilde{x} . By hypothesis, there exists intuitionistic open sets U and V in $(\tilde{X}, \tilde{\tau})$ such that $\tilde{x} \in U$ and $A \subseteq V$, $Cl(U) \cap Cl(V) = \tilde{\Phi}$. Hence $U \cap V = \Phi$ Thus, $(\tilde{X}, \tilde{\tau})$ is a intuitionistic almost regular space. **Theorem IV.14.** An intuitionistic topological space $(\tilde{X}, \tilde{\tau})$ is almost regular if and only if for any intuitionistic N-closed set A and intuitionistic regular closed set B in $(\tilde{X}, \tilde{\tau})$ such that $A \cap B = \tilde{\Phi}$, there exists intuitionistic open sets U and V in $(\tilde{X}, \tilde{\tau})$ such that $A \subseteq V$, $Cl(U) \cap Cl(V) = \tilde{\Phi}$.

Proof. Necessity- Let A be any intuitionistic N -closed set and B be any intuitionistic regular closed set in $(\widetilde{X}, \widetilde{\tau})$. By hypothesis and by theorem IV.13(v), for each intuitionistic point $\widetilde{x} \in A$, (and hence $\widetilde{x} \notin B$,) there exists intuitionistic open sets $U_{\widetilde{x}}$ and $V_{\widetilde{x}}$ such that $\widetilde{x} \in U_{\widetilde{x}}$ and $B \subseteq V_{\widetilde{x}}$ and $\overline{cl}(U_{\widetilde{x}}) \cap \overline{cl}(V_{\widetilde{x}}) = \widetilde{\Phi}$. Then the family $\{U_{\widetilde{x}} : \widetilde{x} \in A\}$ covers A. Since A is intuitionistic N -closed set in $(\widetilde{X}, \widetilde{\tau})$, there exists a finite number of intuitionistic points $\widetilde{x}_1, \widetilde{x}_2, ..., \widetilde{x}_n$ in A such that $A \subseteq \bigcup_{i=1}^n \operatorname{int}(\overline{cl}(U_{\overline{x}_i}))$. If we define

 $U = \bigcup_{i=1}^{n} \operatorname{fint}(\overline{cl}(U_{\mathbb{R}})) \text{ and } V = \bigcap_{i=1}^{n} V_{x_i}.$ Then U and V are intuitionistic open sets such that $A \subseteq U, B \subseteq V$ and $\overline{cl}(U) \cap \overline{cl}(V) = \widetilde{\Phi}.$

Sufficiency-It follows from theorem 4.13 (v) \Rightarrow (i).

References .

- [1] Dogan Coker; "A Note On Intutionistic Sets And Intutionistic Points." Tr. J. Of Mathematics 20 (1996), 343-351.
- [2] Dogan Coker; "An Introduction to Intutionistic Topological Spaces." Busefal 81, 51-56 (2000).
- [3] M.Lellis Thivagar, M.Anbuchelvi, Saeid Jafari; "Note on Intuitionistic Compactness." (Communicated).
- [4] T.Noiri; " N -closed sets and some separation axioms." Annales de la Societe Scientifique de Bruexelles, T. 88, II, pp. 195-199 (1974).
- [5] M.K.Singal and Shashi Prabha Arya; "On Almost regular spaces." Glasnik Mat., 4 (24), 89-99, 1969.
- [6] Sadik Bayhan and Dogan Coker; "On Separation Axioms in Intutionistic Topological Spaces." IJMMS (2001) 621-630.