Some Properties of semi-symmetric non-metric connection in LP-Sasakian manifold

A.H. Hella

Abstract

S.K. Chaubey and R.H. Ojha [4] introduced a semi-symmetric non-metric connection in almost contact manifold and also studied the connection in Sasakian manifold. The present paper deals with some propertied of semi-symmetric non-metric connection in LP-Sasakian manifold. Key words: Lorentzian almost paracontact manifold, LP-Sasakian manifold and semi-symmetric non metric connection.

I. Introduction

An n-dimensional differentiable manifold M , is called a Lorentzian almost paracontact manifold (briefly LAP- Sasakian manifold) [2],[3] if it admits $(1,1)$ tensor field \square, a contravariant vector field ξ, a 1form η and a Lorentzian metric g which satisfy

$$
\begin{align*}
& \square^{2}(X)=X+\eta(X) \xi \tag{1}\\
& \eta(\xi)=-1 \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{g}(\square \mathrm{X}, \square \mathrm{Y})=\mathrm{g}(\mathrm{X}, \mathrm{Y})+\eta(\mathrm{X}) \eta(\mathrm{Y}) \tag{3}\\
& \mathrm{g}(\mathrm{X}, \xi)=\eta(\mathrm{X}) \tag{4}\\
& \nabla_{\mathrm{X}} \xi=\square(\mathrm{X}) \tag{5}
\end{align*}
$$

$$
\begin{equation*}
\left(\nabla_{\mathrm{X}} \square\right)(\mathrm{Y})=\mathrm{g}(\mathrm{X}, \mathrm{Y})+\eta(\mathrm{Y}) \mathrm{X}+2 \eta(\mathrm{X}) \eta(\mathrm{Y}) \tag{6}
\end{equation*}
$$

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g . It can be easily seen that in an LAP- Sasakian manifold, the following relations holds
(a)

$$
\square \xi=0,
$$

(b) $\eta(\square X)=0$
(7)

$$
\operatorname{rank} \square=\mathrm{n}-1
$$

(8)

In an LAP manifold, if we put

$$
\square(\mathrm{X}, \mathrm{Y})=\mathrm{g}(\mathrm{X}, \square \mathrm{Y})
$$

(9)
for any vector fields X and Y , then the tensor field ${ }^{`} \square(\mathrm{X}, \mathrm{Y})$ is a symmetric $(0,2)$ tensor field [2], that is

$$
`(\mathrm{X}, \mathrm{Y})=` \square(\mathrm{Y}, \mathrm{X})
$$

(10)

An LAP- Sasakian manifold satisfying the relation [2]

$$
\begin{equation*}
\left(\nabla_{\mathrm{Z}}^{\prime} \square\right)(X, Y)=g(Y, Z) \eta(X)+g(X, Z) \eta(Y)+2 \eta(X) \eta(Y) \eta(Z) \tag{11}
\end{equation*}
$$

is called a normal Lorentzian paracontact manifold or Lorentzian para-sasakian manifold (briefly LP-
Sasakian) manifold.
Also, since the vector field η is closed in an LP- Sasakian manifold, we have [2] , [5].

$$
\left(\nabla_{X} \eta\right)(Y)={ }^{`} \square(X, Y)
$$

(12)
for any vector field X and Y .
In an n -dimensional LP- Sasakian manifold, the following relations holds [1], [5]

$$
\begin{equation*}
\mathrm{g}(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}, \xi)=\eta(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z})=\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \eta(\mathrm{X})-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \eta(\mathrm{Y}) \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
R(\xi, X) Y=g(X, Y) \xi-\eta(Y) X \tag{14}
\end{equation*}
$$

$$
R(X, Y) \xi=\eta(Y) X-\eta(X) Y
$$

(15)

$$
\begin{equation*}
R(\xi, X) \xi=X-\eta(X) \xi \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
S(X, \xi)=(n-1) \eta(X) \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{S}(\square \mathrm{X}, \square \mathrm{Y})=\mathrm{S}(\mathrm{X}, \mathrm{Y})+(\mathrm{n}-1) \eta(\mathrm{X}) \eta(\mathrm{Y}) \tag{17}
\end{equation*}
$$

for any vector fields X, Y and Z , where R is the Riemannian curvature tensor and S is the Ricci tensor.

II. Semi-symmetric non-metric connection

A linear connection B on $\left(\mathrm{M}_{\mathrm{n}}, g\right)$ defined as

$$
\begin{equation*}
\mathrm{B}_{\mathrm{X}} \mathrm{Y}=\nabla_{\mathrm{X}} \mathrm{Y}-\eta(\mathrm{Y}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Y}) \mathrm{T} \tag{19}
\end{equation*}
$$

for arbitrary vector fields X and Y , is said to be a semi-symmetric non-metric connection [4].
Now, if we put (19) as

$$
\begin{equation*}
\mathrm{B}_{\mathrm{X}} \mathrm{Y}=\nabla_{\mathrm{X}} \mathrm{Y}+\mathrm{H}(\mathrm{X}, \mathrm{Y}) \tag{20}
\end{equation*}
$$

where $H(X, Y)=-\eta(Y) X-g(X, Y) T$
Let us define
(a) $\quad S(X, Y, Z)=g(S(X, Y), Z)$
(b) $\mathrm{H}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{g}(\mathrm{H}(\mathrm{X}, \mathrm{Y}), \mathrm{Z})$
then we can write
(a) $\quad S(X, Y, Z)=\eta(X) g(Y, Z)-\eta(Y) g(X, Z)$
(b) $\quad H(X, Y, Z)=-\eta(Y) g(X, Z)-\eta(Z) g(X, Y)$

Theorem 1. Let B be a semi-symmetric non-metric connection in a LP-Sasakian manifold with a Riemannian connection ∇, then we have
(a)

$$
\begin{equation*}
\left(\mathrm{B}_{\mathrm{X}} \square\right)(\mathrm{Y}, \bar{Z})=\eta(\mathrm{Y})\left[\left(\nabla_{\mathrm{X}} \eta\right)(\mathrm{Z})+\left(\nabla_{\mathrm{X}} \eta\right)(\bar{Z})\right] \tag{26}
\end{equation*}
$$

(b) $\left(\mathrm{B}_{\mathrm{X}}{ }^{`} \square\right)\left(\bar{Y}_{,} \mathrm{Z}\right)=\eta(\mathrm{Z})\left[\left(\nabla_{\mathrm{X}} \eta\right)(\mathrm{Y})+\left(\nabla_{\mathrm{X}} \eta\right)(\bar{Y})\right]$

Proof. We have,

$$
\begin{align*}
& \mathrm{X}(` \square(\mathrm{Y}, \mathrm{Z}))=\left(\nabla_{\mathrm{X}} \square\right)(\mathrm{Y}, \mathrm{Z})+` \square\left(\nabla_{\mathrm{X}} \mathrm{Y}, \mathrm{Z}\right)+` \square\left(\mathrm{Y}, \nabla_{\mathrm{X}} \mathrm{Z}\right) \tag{27}\\
= & \left(\mathrm{B}_{\mathrm{X}} \square\right)(\mathrm{Y}, \mathrm{Z})+`\left(\mathrm{~B}_{\mathrm{X}} \mathrm{Y}, \mathrm{Z}\right)+` \square\left(\mathrm{Y}, \mathrm{~B}_{\mathrm{X}} \mathrm{Z}\right) \\
& \left(\mathrm{B}_{\mathrm{X}} \quad \square\right)(\mathrm{Y}, \mathrm{Z})=\left(\nabla_{\mathrm{X}} \square\right)(\mathrm{Y}, \mathrm{Z})+`\left(\nabla_{\mathrm{X}} \mathrm{Y}-\mathrm{B}_{\mathrm{X}} \mathrm{Y}, \mathrm{Z}\right)+` \square\left(\mathrm{Y}, \nabla_{\mathrm{X}} \mathrm{Z}-\mathrm{B}_{\mathrm{X}} \mathrm{Z}\right)
\end{align*}
$$

With the help of equation (20), the above equation becomes
$\left(\mathrm{B}_{\mathrm{X}}{ }^{`} \square\right)(\mathrm{Y}, \mathrm{Z})=\left(\nabla_{\mathrm{X}}{ }^{`} \square\right)(\mathrm{Y}, \mathrm{Z})-` \square(\mathrm{H}(\mathrm{X}, \mathrm{Y}), \mathrm{Z})-` \square(\mathrm{Y}, \mathrm{H}(\mathrm{X}, \mathrm{Z}))$
$\left(\mathrm{B}_{\mathrm{X}} \square\right)(\mathrm{Y}, \mathrm{Z})=\left(\nabla_{\mathrm{X}}{ }^{`} \square\right)(\mathrm{Y}, \mathrm{Z})-`(\mathrm{H}(\mathrm{X}, \mathrm{Y}), \mathrm{Z})-` \square(\mathrm{H}(\mathrm{X}, \mathrm{Z}), \mathrm{Y})$
Using equation (9) in this equation, we obtain

$$
\begin{equation*}
\left(\mathrm{B}_{\mathrm{X}}^{`} \square\right)(\mathrm{Y}, \mathrm{Z})=\left(\nabla_{\mathrm{X}}^{`} \square\right)(\mathrm{Y}, \mathrm{Z})-\mathrm{g}(\mathrm{H}(\mathrm{X}, \mathrm{Y}), \bar{Z})-\mathrm{g}(\mathrm{H}(\mathrm{X}, \mathrm{Z}), \bar{Y}) \tag{28}
\end{equation*}
$$

From equation (23) (b) and equation (29), we obtain

$$
\begin{equation*}
\left(\mathrm{B}_{\mathrm{X}}{ }^{\prime} \square\right)(\mathrm{Y}, \mathrm{Z})=\left(\nabla_{\mathrm{X}}{ }^{\prime} \square\right)(\mathrm{Y}, \mathrm{Z})-\mathrm{H}(\mathrm{X}, \mathrm{Y}, \bar{Z})-\mathrm{H}(\mathrm{X}, \mathrm{Z}, \bar{Y}) \tag{29}
\end{equation*}
$$

Now from equation (25) above becomes

$$
\begin{align*}
\left(\mathrm{B}_{\mathrm{X}}{ }^{\prime} \square\right)(\mathrm{Y}, \mathrm{Z})= & \left(\nabla_{\mathrm{X}}{ }^{`} \square\right)(\mathrm{Y}, \mathrm{Z})+\eta(\mathrm{Y}) \mathrm{g}(\mathrm{X}, \bar{Z})+\eta(\bar{Z}) \mathrm{g}(\mathrm{X}, \mathrm{Y}) \tag{30}\\
& +\eta(\mathrm{Z}) \mathrm{g}(\mathrm{X}, \bar{Y})+\eta(\bar{Y}) \mathrm{g}(\mathrm{X}, \mathrm{Z}) \\
\left(\mathrm{B}_{\mathrm{X}} ` \square\right)(\mathrm{Y}, \mathrm{Z})= & \left(\nabla_{\mathrm{X}}{ }^{`} \square\right)(\mathrm{Y}, \mathrm{Z})+\eta(\mathrm{Y}) \mathrm{g}(\mathrm{X}, \bar{Z})+\eta(\mathrm{Z}) \mathrm{g}(\mathrm{X}, \bar{Y}) \\
\left(\mathrm{B}_{\mathrm{X}} \quad \square\right)(\mathrm{Y}, \mathrm{Z})= & \left(\nabla_{\mathrm{X}} \cdot \square\right)(\mathrm{Y}, \mathrm{Z})+\eta(\mathrm{Y})\left(\nabla_{\mathrm{X}} \eta\right)(\mathrm{Z})+\eta(\mathrm{Z})\left(\nabla_{\mathrm{X}} \eta\right)(\mathrm{Y}) \tag{31}
\end{align*}
$$

From equation (9) and (31), we obtain

$$
\begin{gather*}
\left(B_{X}{ }^{`} \square\right)(Y, Z)=g(Z, X) \eta(Y)+g(Y, X) \eta(Z)+2 \eta(X) \eta(Y) \eta(Z) \\
+\eta(Y)\left(\nabla_{X} \eta\right)(Z)+\eta(Z)\left(\nabla_{X} \eta\right)(Y) \tag{32}
\end{gather*}
$$

Replace Z by \bar{Z} in equation (32) it becomes

$$
\begin{aligned}
\left(\mathrm{B}_{\mathrm{X}} \square \square\right)(\mathrm{Y}, \bar{Z})= & \mathrm{g}(\bar{Z}, \mathrm{X}) \eta(\mathrm{Y})+\mathrm{g}(\mathrm{Y}, \mathrm{X}) \eta(\bar{Z})+2 \eta(\mathrm{X}) \eta(\mathrm{Y}) \eta(\bar{Z}) \\
& +\eta(\mathrm{Y})\left(\nabla_{\mathrm{X}} \eta\right)(\bar{Z})+\eta(\bar{Z})\left(\nabla_{\mathrm{X}} \eta\right)(\mathrm{Y}) \\
\left(\mathrm{B}_{\mathrm{X}}{ }^{`} \square\right)(\mathrm{Y}, \bar{Z})= & \mathrm{g}(\bar{Z}, \mathrm{X}) \eta(\mathrm{Y})+\eta(\mathrm{Y})\left(\nabla_{\mathrm{X}} \eta\right)(\bar{Z}) \\
\left(\mathrm{B}_{\mathrm{X}}{ }^{\prime} \square\right)(\mathrm{Y}, \bar{Z})= & \left(\nabla_{\mathrm{X}} \eta\right)(\mathrm{Z}) \eta(\mathrm{Y})+\eta(\mathrm{Y})\left(\nabla_{\mathrm{X}} \eta\right)(\bar{Z}) \\
\left(\mathrm{B}_{\mathrm{X}} \cdot \square\right)(\mathrm{Y}, \bar{Z})= & \eta(\mathrm{Y})\left[\left(\nabla_{\mathrm{X}} \eta\right)(\mathrm{Z})+\left(\nabla_{\mathrm{X}} \eta\right)(\bar{Z})\right]
\end{aligned}
$$

Similarly replace Y by \bar{Y} in equation (32) we get equation (27).
Theorem 2. Let B be a semi-symmetric non-metric connection in LP-Sasakian manifold with a Riemannian connection ∇, then we have

$$
\left(\mathrm{B} \bar{X}^{`} \square\right)(\mathrm{Y}, \mathrm{Z})-\left(\mathrm{B}_{\mathrm{Y}}{ }^{`} \square\right)(\mathrm{Z}, \bar{X})-\left(\mathrm{B}_{\mathrm{Z}} \square\right)(\bar{X}, \mathrm{Y})=0
$$

Proof:- Barring X in equation (31), we get.

$$
\begin{equation*}
\left(\mathrm{B} \bar{X}^{`} \square\right)(\mathrm{Y}, \mathrm{Z})=\left(\nabla \overline{X^{`}} \square\right)(\mathrm{Y}, \mathrm{Z})+\eta(\mathrm{Y})\left(\nabla \overline{X^{\prime}} \eta\right)(\mathrm{Z})+\eta(\mathrm{Z})(\nabla \bar{X} \eta)(\mathrm{Y}) \tag{33}
\end{equation*}
$$

From equation (11), the above equation becomes.

$$
\left(\mathrm{B} \bar{X}^{`} \square\right)(\mathrm{Y}, \mathrm{Z})=\mathrm{g}(\mathrm{Z}, \bar{X}) \eta(\mathrm{Y})+\mathrm{g}(\mathrm{Y}, \bar{X}) \eta(\mathrm{Z})+2 \eta(\bar{X}) \eta(\mathrm{Y}) \eta(\mathrm{Z})
$$

$$
\begin{equation*}
=` \square(\mathrm{Z}, \mathrm{X}) \eta(\mathrm{Y})+` \square(\mathrm{Y}, \mathrm{X}) \eta(\mathrm{Z})+\eta(\mathrm{Y}) ` \square(\bar{X}, \mathrm{Z}) \tag{34}
\end{equation*}
$$

$+\eta(\mathrm{Z}) ` \square(\bar{X}, \mathrm{Y})$
Similarly we get another two equations by taking cyclic of above equation.

$$
\begin{align*}
& \left(\mathrm{B}_{\mathrm{Y}}^{`} \square\right)(\mathrm{Z}, \bar{X})=` \square(\mathrm{Y}, \mathrm{X}) \eta(\mathrm{Z})+\eta(\mathrm{Z})^{`} \square(\bar{X}, \mathrm{Y}) \tag{35}\\
& \left(\mathrm{B}_{\mathrm{Z}} \square\right)(\mathrm{Z}, \bar{X})=` \square(\mathrm{Z}, \mathrm{X}) \eta(\mathrm{Y})+\eta(\mathrm{Y})^{`} \square(\bar{X}, \mathrm{Z}) \tag{36}
\end{align*}
$$

From equations (34), (35) and (36), we get the result.
Theorem 3. Let B be a semi-symmetric non-metric connection in LP-Sasakian manifold with a Riemannian connection ∇, then we have

$$
\left(\mathrm{B} \bar{Y}^{`} \square\right)(\mathrm{Z}, \mathrm{X})-\left(\mathrm{B}_{\mathrm{Z}} \square\right)(\mathrm{X}, \bar{Y})-\left(\mathrm{B}_{\mathrm{X}}{ }^{\prime} \square\right)(\bar{Y}, \mathrm{Z})=0
$$

Proof:- Barring Y in equation (31), we get.

$$
\begin{equation*}
\left(\mathrm{B}_{\mathrm{X}}{ }^{\prime} \square\right)(\bar{Y}, \mathrm{Z})=\left(\nabla_{\mathrm{X}} \square\right)(\bar{Y}, \mathrm{Z})+\eta(\bar{Y})\left(\nabla_{\mathrm{X}} \eta\right)(\mathrm{Z})+\eta(\mathrm{Z})(\nabla \bar{X} \eta)(\mathrm{Y}) \tag{37}
\end{equation*}
$$

From equation (11), the above equation becomes.

$$
\begin{align*}
\left(\mathrm{B}_{\mathrm{x}} \square\right)(\bar{Y}, \mathrm{Z})= & \mathrm{g}(\mathrm{Z}, \mathrm{X}) \eta(\bar{Y})+\mathrm{g}(\bar{Y}, \mathrm{X}) \eta(\mathrm{Z})+2 \eta(\mathrm{X}) \eta(\bar{Y}) \eta(\mathrm{Z})+\eta(\mathrm{Z})\left(\nabla_{\mathrm{x}} \eta\right)(\bar{Y}) \\
& =\mathrm{g}(\bar{Y}, \mathrm{X}) \eta(\mathrm{Z})+\eta(\mathrm{Z})\left(\nabla_{\mathrm{x}} \eta\right)(\bar{Y}) \\
& =`(\mathrm{X}, \mathrm{Y}) \eta(\mathrm{Z})+\eta(\mathrm{Z}) `(\mathrm{X}, \bar{Y}) \tag{38}
\end{align*}
$$

Similarly we get another two equations by taking cyclic of above equation.
$\left(\mathrm{B} \bar{Y}^{`} \square\right)(\mathrm{Z}, \mathrm{X})=` \square(\mathrm{X}, \bar{Y}) \eta(\mathrm{Z})+` \square(\mathrm{Z}, \mathrm{Y}) \eta(\mathrm{X})+\eta(\mathrm{Z}){ }^{`} \square(\mathrm{X}, \bar{Y})+\eta(\mathrm{X}){ }^{`} \square(\bar{Y}, \mathrm{Z}) \quad$ (39)
(B $\left.\quad \mathrm{z}^{\circ} \square\right)($
$\mathrm{Z}, \bar{X})=\eta(\mathrm{X}) `(\bar{Y}, \mathrm{Z})+` \square(\mathrm{Z}, \mathrm{Y}) \eta(\mathrm{X})$
From equations (38), (39) and (40), we get the required result.
Theorem 4. Let B be a semi-symmetric non-metric connection in LP-Sasakian manifold with a Riemannian connection ∇, then we have

$$
\left(\mathrm{B} \bar{Y}^{`} \square\right)(\mathrm{Z}, \mathrm{X})-\left(\mathrm{B}_{\mathrm{Z}}^{`} \square\right)(\mathrm{X}, \bar{Y})-\left(\mathrm{B} \bar{X}^{`} \square\right)(\bar{Y}, \mathrm{Z})=0
$$

Proof:- Barring Y in equation (31), we get.

$$
\begin{equation*}
\left(\mathrm{B}_{\mathrm{x}} \quad \square\right)(\mathrm{Y}, \bar{Z})=\left(\nabla_{\mathrm{X}} \quad \square\right)(\mathrm{Y}, \bar{Z})+\eta(\mathrm{Y})\left(\nabla_{\mathrm{x}} \eta\right)(\bar{Z})+\eta(\bar{Z})\left(\nabla_{\mathrm{X}} \eta\right)(\mathrm{Y}) \tag{41}
\end{equation*}
$$

$\left(\mathrm{B}_{\mathrm{x}}{ }^{`} \square\right)(\mathrm{Y}, \bar{Z})=\left(\nabla_{\mathrm{X}}{ }^{`} \square\right)(\mathrm{Y}, \bar{Z})+\eta(\mathrm{Y})\left(\nabla_{\mathrm{x}} \eta\right)(\bar{Z})$
From equation (11), the above equation becomes.

$$
\begin{align*}
\left(\mathrm{B}_{\mathrm{X}} \square\right)(\mathrm{Y}, \bar{Z})= & \mathrm{g}(\bar{Z}, \mathrm{X}) \eta(\mathrm{Y})+\mathrm{g}(\mathrm{Y}, \mathrm{X}) \eta(\bar{Z})+2 \eta(\mathrm{X}) \eta(\mathrm{Y}) \eta(\bar{Z})+\eta(\mathrm{Y})\left(\nabla_{\mathrm{X}} \eta\right)(\bar{Z}) \\
& =\mathrm{g}(\bar{Z}, \mathrm{X}) \eta(\mathrm{Y})+\eta(\mathrm{Y})\left(\nabla_{\mathrm{X}} \eta\right)(\bar{Z}) \\
& =`(\mathrm{X}, \mathrm{Z}) \eta(\mathrm{Y})+\eta(\mathrm{Y}) ` \square(\mathrm{X}, \bar{Z}) \tag{42}
\end{align*}
$$

Similarly we get another two equations by taking cyclic of above equation.

$$
\begin{align*}
& \left(\mathrm{B}_{\mathrm{Y}}{ }^{`} \square\right)(\bar{Z}, \mathrm{X})=` \square(\mathrm{Y}, \mathrm{Z}) \eta(\mathrm{X})+\eta(\mathrm{X})^{`} \square(\mathrm{Y}, \bar{Z}) \tag{43}\\
& \quad\left(\mathrm{B}_{\mathrm{Z}} \quad \square\right)(\mathrm{X}, \mathrm{Y})=` \square(\mathrm{Y}, \mathrm{Z}) \eta(\mathrm{X})+` \square(\mathrm{X}, \mathrm{Z}) \eta(\mathrm{Y})+\eta(\mathrm{X}) `(\mathrm{Y}, \bar{Z})+\eta(\mathrm{Y}) ` \square(\mathrm{X}, \bar{Z}) \tag{44}
\end{align*}
$$

From equations (42), (43) and (44), we get the required result.

Refrences

[1] I. Mihai, A. A. Shaikh and U. C. De. , On Lorentzian Para Sasakian manifolds, Korean J. Math. Sciences, 6 (1999) , 1-13.
[2] K. Matsumoto, On Lorentzian Para contact manifolds, Bull. of yamagata Univ., Nat. Sci., 12 (1989), 151-156.
[3] K. Matsumoto and I. Mihai, On a certain transformation in Lorentzian Para contact manifold , Tensor N.S., 47, (1989), 189197.
[4] S. K. Chaubey and H. Ojha, On a semi-symmetric non-metric and quarter-symmetric metric connections, Tensor N.S., 70, No. 2 (2008), 202-213.
[5] U. C. De , K. Matsumoto and A. A. Shaikh, Lorentzian Para Sasakian manifolds, Rendicontidel Seminario Matematico di Messina, Series II , Supplemento No., 3 (1999), 149-158.

