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Abstract:  Modeling of the stress accumulation process during quasi-static aseismic period in the presence of 

non planar strike-slip fault in seismically active regions has been considered. A viscoelastic half space was 

taken to represent the lithosphere-asthenosphere system and forces arising out some tectonic processes e.g. 

mantle convection and the resulting driving forces, were considered to be the main reason for the 

accumulation of stress in the lithosphere near the earthquake faults. When the accumulated stresses exceed the 

frictional and cohesive forces across the fault, a sudden and/or creeping movement across the fault occurs. In 

this paper the pattern of stress accumulation near the faults and the surface shear strain during the aseismic 

period have been considered using suitable mathematical techniques including integral transforms and 

Green’s functions. A detail study may lead to an estimation of the time-span between two consecutive seismic 
events. It is expected that such studies may be useful in earthquake prediction. 
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I.  Introduction 
Earthquakes are generated due to various types of movements across seismic faults having different 

geometrical features. Two major seismic events are usually separated by long quasi-static aseismic periods 

which may extend up to several years. Stresses accumulate near the faults during this aseismic period due to 

various tectonic reasons including mantle convection. When the accumulated stress exceeds some thresholds 

value, movement across the fault occurs leading in to an earthquake. Longtime observations indicate that in 

many cases the faults are not geometrically simple planar but have some non planar features. In view of this 

we consider a simple model of a non planar strike slip fault consisting of two plane surfaces with a common 

boundary inclined at different angles with horizontal. 
The mechanics of quasi-statical deformation in the presence of earthquake faults of arbitrary shape 

and size in elastic medium were considered by many authors-Steketee [1], Maruyama [2,3], Rybicki [4], 

Lisowski [5], Sato[6-8], Chinnery [9-18], Sarvojit Singh, Sunita Rani [19,20], Mukhopadhyay et.al.[21-27]. 

The studies of dynamic ruptures in the presence of earthquakes faults of complex geometrical features was 

studied by Uri S.ten Brink, Rafael Katzmanl, Jian Lin [28], J. Ramon Arrowsmith and Elizabeth Stone [29], 

Sato, H.,et.al.[30], F. Lorenzo-Martin, R. Wang and F. Roth [31], David D. Oglesby [32], George E. Hillery, 

Satosi Ide , Hideo Aochi [33], Michiharu Ikeda, Dapeng Zhao, Yuki Ohno [34]. 

 

II. Formulation 

We consider a simple theoretical model of the lithosphere-asthenosphere system represented by a 

viscoelastic half space with a creeping, surface breaking long, non-planar strike-slip fault consisting of two 

planar parts F1 and F2. The first part of the fault F1 inclined at an angle θ1 and second part of the fault F2 

inclined at an angle θ2 to the horizontal respectively. Both the parts of the fault situated in a linearly 

viscoelastic half-space with its material of Maxwell type. The upper and the lower edge of the fault are 

horizontal. We, however, consider a long fault, whose length is assumed to be much greater than the width 

of the both parts of the fault. Let the width of the first part F1 and second part F2 of fault are l1 and l2 

respectively.  

We note here that some authors, such as Rybicki [4] considered layered model for the lithosphere-

asthenosphere system. But, intensive numerical computations show that the presence of an elastic layer does 

not significantly change the characteristic behaviour of the rate of accumulation of surface shear strain and the 

rate of stress accumulation in the model. It only results in small quantitative changes in the stress and strain 
pattern due to fault movement. It is found that in upper part of the model (within a depth of 50 km) this 

quantitative change is well within 10% and for the region below it, it is only 1%. With these observations, it is 

quite reasonable to represent the lithosphere-asthenosphere system by means of a single viscoelastic half space. 

It is expected that of the essential features of aseismic ground deformations and the effect of fault movement 
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and interacting effects among neighbouring faults can be well understood with the help of such half space 

model. 

 We introduce a rectangular Cartesian coordinate system (y1, y2, y3) with the plane free surface of the 

viscoelastic half-space as the plane y3 = 0 and y3 –axis pointing into the half-space. The upper edge of the 

fault is taken as y1 -axis. For convenience of the analysis we introduce another two rectangular systems of  

Cartesian coordinates ( y'1, y'2, y'3 ) and ( y"1, y"2, y"3 ) associated with the parts F1 and F2 of the fault 
respectively with origin O of  first system and with origin O'( 0, l1 sin θ1  , l1 cos θ 2) for second system. 

              The plane of first part F1 of the fault is given by the plane y'2 = 0 and the plane of second part F2 of 

the fault is given by the plane y''2 = 0. With this choice of axes the half space occupies the region y3 ≥ 0. 

While the fault is given by (F1: y'2 = 0, 0 ≤ y'3 ≤ l1 and F2: y ''2 = 0, 0 ≤ y ''3 ≤ l2). The relations between (y1, 

y2, y3),   (y'1, y'2, y'3) and (y''1, y''2, y''3) are given by: 

                                                                  y1 = y'1 

y2 = y'2 sin θ 1 + y'3 cos θ 1 

 y3 = -y'2 cos θ 1 + y'3 sin θ 1 

and  

                                                                     y1 = y''1 

                   y2 = l1cos θ 1 + y''2 sin θ 2 + y''3 cos θ 2 

                 y3 = l1sin θ 1 - y''2 cos θ 2 + y''3 sin θ 2 

  A section of the theoretical model by the plane y1 = 0 has been shown in the Fig. (1) in which the 

coordinate axes (y2, y3), (y'2 , y'3 ), and (y''2 , y''3 ) have also been identified. 

Let (u1, u2, u3) be the components of the displacement u in the half space y3 ≥ 0 in the directions (y1, 

y2, y3) axes respectively and let τij (i, j = 1, 2, 3) the stress components while eij (i, j = 1, 2, 3) are the 

components of strain. For a long fault, all these quantities are taken to be independent of y1 and are functions 

of y2, y3 and t. These components separate out into two distinct and independent groups (Maruyama, [3]) - 

one group containing u1, τ12, τ13 and e12, e13 is associated with strike-slip movement, while the other group 

consisting of u2, u3, τ22, τ33, τ23 and e22, e33, e23 is associated with a possible dip-slip movement of the fault. 

Here we consider only the strike-slip movement of the fault. 

 

II.1 Constitutive equations (stress - strain relations) 

The stress-strain relations for the viscoelastic half space (Budiansky and Amazigo [35]) 
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When η is the effective viscosity and µ is the effective rigidity of the material. 

 

II.2 Stress equation of motion 

For the slow aseismic quasi-static deformation of the system, inertial forces are very small and are 

neglected; the relevant stress would satisfy the following relations 
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II.3 Boundary conditions 
 τ13 = 0 on y3 = 0  (4) 

                                    (-∞ < y2 < ∞, t ≥ 0) 

 τ13 → 0 as y3 →∞              (5) 
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 (-∞ < y2 < ∞, t≥ 0) 

 τ12→ τ∞ as |y2|→ ∞             (6) 

 (y3 ≥ 0, t ≥ 0) 

where τ∞ is the constant shear stress maintained by the tectonic forces far away from the fault. 

 

II.4 Initial conditions 
 Let (u1)0, (τ12)0, (τ13)0, (e12)0, (e13)0 are the values of u1, τ12, τ13, e12, e13 respectively at 

time t = 0. They are functions of (y2, y3) and satisfy the relations (1) to (6) where time t is measured from a 

suitable instant when there is no seismic activity in the system. 

 

III.  Displacements, Stresses And Strains In The Absence Of Any Fault Movement 

 In this case the displacements, stresses and strains are all continuous throughout the system and the 

time t is measured from a suitable instant for which conditions (1) to (6) are satisfied for t ≥ 0. The solutions 

can be obtained by taking Laplace transformation of equations (1) to (6) with respect to time t which give rise 

to a boundary value problem for 1 12 13, ,u   the Laplace transformation of u1, τ12, τ13 with respect to time t. On 

taking inverse of the Laplace transforms, we get the following expression (Mukhopadhyay,et.al.[23]) in the 

absence of fault movement valid throughout the model for t ≥ 0 
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where 1 2 0( )   , 1 2 0( )    are values of  1 2    and 1 2    at t = 0 respectively and are given by 
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 Thus if the shear stress τ1'2' < τ∞ sin 1 near F1 and τ1''2'' < τ∞ sin 2 at t = 0 then there will be a 

continuous accumulation of shear stress τ1'2' near F1 and τ1''2'' near F2 for t > 0 and ultimately as t → ∞, τ1'2' 

→ τ∞ sin 1 and τ1''2'' → τ∞ sin 2 in the neighborhood of F1 and F2 respectively. 

It may further be noted that the rate of accumulation of shear stress τ1'2'  and τ1''2'' as well as the 

maximum limiting values of shear stress τ1'2' (which is = τ∞ sin 1 )  and τ1''2'' (which is = τ∞ sin 2 ) both 

increase as  1,  2 increase and attain the maximum values when the fault is vertical ( 1= π/2, 2 

=π/2).Thus the accumulation of shear stress τ1'2', τ1''2'' tending to cause strike-slip movement can reach 

comparatively greater values if the fault is vertical or nearly vertical; so that the possibility of a major strike 

slip movement is relatively greater for nearly vertical fault compared to those which are inclined at 

relatively smaller angles to the horizontal. This result is consistent with the general observations. If the 

characteristic of the fault be such that it starts creeping or a sudden seismic movement occurs across it when 

τ1'2' and τ1''2'' in the neighborhood of the fault reaches some critical value, say τc (τc < τ∞ sin 1 for F1 and τc < 

τ∞ sin 2 for F2 ) then there will be a creeping or sudden seismic movement across F1 and F2 after a  finite 

length of time T (say) and then the solutions given by (7),(8) do not hold good and require some modifications. 

 

IV. Displacements, Stresses And Strains After The Commencement Of The Fault Creep 
We consider a slow, aseismic creep movement across the fault commencing at time t = T .Then the 

accumulated stress is released at least to some extent and the fault becomes locked again. The time period of 

creeping fault is considered as a very short period compare to the aseismic period. All the relations (1) to (6) 

are valid for t ≥ T. In addition we have the following conditions which characterize the creeping movements 

across F1 and F2  
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                               = U (t1) f(y'3)H(t1)  (9a) 
 across F1 (y'2 = 0, 0 ≤ y'3 ≤ l1) 

  

                              = V (t1) g(y''3 )H(t1 )   (9b) 
 across F2 (y''2 = 0, 0 ≤ y''3 ≤ l2) 

where t1= t-T and H(t1) is heaviside unit step function. f (y'3) and g (y''3) give the spatial dependence of the 

creep movement along the widths of F1 and F2 respectively and the relative creep displacements are given by 
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Here U(t1), V(t1) are assumed to be continuous function of t1 and f(y'3) and g(y"3) are continuous function of 

y'3 and y''3 respectively. U (t1) = 0, V (t1) = 0 for t1≤ 0. The creep velocity across F1, F2 are given by     
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  which is assumed to be finite for all t1 ≥ 0. 

To solve the initial boundary value problem involving (u1, τ12, τ13) for t ≥ T, we try to obtain u1, τ12, τ13 in the 

following form 
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where (u1)1, (τ12)1, (τ13)1 are continuous everywhere except at the bending point O' in the model satisfying 

equations (1) to (6) and assumed the values (u1)0, (τ12)0, (τ13)0 at t = 0. The solutions for (u1)1, (τ12)1, (τ13)1 will 

be similar to equation (7) and (8) 
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which satisfy equations (1), (2), (3) and boundary conditions (4), (5) and the following boundary condition 

 (τ12) → τ∞ as |y2| → 0   (12a) 

while (u1)i, (τ12)i , (τ13)i ,(i = 2, 3) satisfy the equation (1), (2), (3) and the boundary condition 

 (τ12)2 and (τ13)3 → 0 as |y2| → ∞ (12b) 

    (y3 ≥ 0, t1 ≥ 0) 

together with the creeping condition 
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 Also, (u1)2, (τ12)2, (τ13)2 = 0 for t1 ≤ 0  (14a) 

          (u1)3, (τ12)3, (τ13)3 = 0 for t1 ≤ 0  (14b) 

To obtain the solutions for (u1)2, (τ12)2, (τ13)2  for t1 ≥ 0, we take Laplace transforms of equations (1) 

to (6) and equations (12a), (13a), (14a) with respect to t1, the resulting boundary value problem involve 
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     1 12 132 2 2
, ,u    the Laplace transforms of (u1)2, (τ12)2 and (τ13)2 with respect to time t1. The 

transformed equations can be solve by using modified Green’s function technique developed by Maruyama 

[3] as explained in the Appendix. On inverting these Laplace transforms the solutions for (u1)2, (τ12)2, (τ13)2 

for t1 ≥ 0 and y'2 ≠ 0 with constant creep velocity W1 of F1 are obtained as follows 
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where 1 , 1 , 1 are given the appendix. 

Similarly solutions for (u1)3, (τ12)3 and (τ13)3 can similar be obtained as follows 
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where U1(t1) = W1.t1, V1(t1) = W2.t1, W1,W2 are constants. 

The expressions of 2 2 2, ,    are given in the appendix.   

Thus the final solutions for displacements, stresses and strains for t1 ≥ 0 are given by 
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 It is found that the displacements, stresses and strains will be finite and single valued everywhere in 

the model, if the following conditions are satisfied 

For f(y'3) 

(i) f(y'3), f '(y'3) are continuous function of  y'3 for 0 ≤ y'3  ≤ l1. 

(ii)  f '(0) = 0. 

(iii) f ''(y'3) is continuous in 0 ≤ y'3  ≤ l1  except for a finite number of points of finite discontinuity in          

0 ≤ y'3  ≤ l1, or, f '' (y'3) is continuous in 0 < y'3  < l1 and there exist real constant m, n < 1 such that (y'3)
m f '' 

(y'3) → 0 or to a finite limit as y'3 → 0+ and that (l1-y'3)
n f '' (y'3) → 0 or to a finite limit as 

0

3 1y l   . 

For g(y''3) 

(i) g(y''3), g'(y''3) are continuous function of  y''3 for 0 ≤ y''3  ≤ l2. 

(ii) g(l2) = 0 and g'(0) = g'(l2) = 0. 

(iii) Either g''(y''3) is continuous in 0 ≤ y''3  ≤ l2 or, g''(y''3) is continuous in 0 ≤ y''3  ≤ l2 except for a 

finite number of points of finite discontinuity in 0 ≤ y''3  ≤ l2 or g''(y''3) is continuous in 0 < y''3 < l2 and there 

exist real constant m,n < 1 such that (l2-y''3)
mg''(y''3) → 0 or to a finite limit as 

0

3 2y l   and (y''3)
n g''(y''3) 

→ 0 or to a finite limit as y''3 → 0+ 

     

V.  Numerical Computations 
We compute the following quantities assigning suitable values to the model parameters (Cathles, [36], 

Peter Chift, Jain Lin, Udo Barcktiausen [37], Shun-ichiro Karato [38]) 

µ = 3.78 × 1011 dyne/sq.cm 
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                                                                 η= 3 × 1021 poise 

for the lithosphere and upper asthenosphere (for depth not more than 200 km). 

 

l1 = 10 km 

l2 = 12 km 

(i) The rate of change of surface displacement per year due to fault creep 
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(ii) Change in surface shear strain due to fault creep 
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(iii)        The rate of release (per year) of the surface shear strain due to creep 
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(iii) The shear stress  
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for different values of  θ1 and θ2 in (0< θ1, θ2 ≤ π/2 ) and W1, W2 in the range of (0-7) cm/year. All the 

computations have been done at time t1 = t - T = 1 year, i.e. one year after the commencement of fault creep. 

We take τ∞ =300 bar which is in conformity with most of the estimations made in this direction 

(Mukhapadhyay, et.al. [21-27]). The threshold level τc of the shear stress that can be balanced by the 

frictional and cohesive forces across the fault depends upon the inclination of the fault. For example, we 

consider the upper part F1 of the fault which is inclined to the horizontal at an angle θ1. Let us assume 

1

1
sin

2
c   for F1, noting that 1sin   is the maximum value of the shear stress τ1'2' that can be 

accumulated near F1 under the action of τ∞. Further let the creeping movement across F1 releases (stress-

drop) two-third of τc and one-third of τc remains when aseismic state re-established, so that at t = 0, 

1 2 0 1

1
( ) sin

6
     . It is found that it takes about 129 years to reach accumulated stress near F1 to the 

threshold level τc under the action of τ∞, so that T ~ 129 years. 

 We carried out the numerical computations with the following choice of f (y') and g(y'') 
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The depth-dependence of f and g are chosen in a way that the continuity at the common edge be maintained, 

i.e. f (at y'3 = l1) = g (at y''3 = 0) = k (here k has been chosen as 1/2, may be taken otherwise). This continuity 
condition however violated the conditions stated earlier for bounded stress even at the common edge. 

However, stress very close to this common edge are found to be bounded. 

 

VI.  Discussion Of The Result 

 Fig. 2(a), 2(b), 2(c) and 2(d) show the regions of stress accumulation (A) and stress release 

(R) due to fault creep across F1 and F2. It is found that if a second fault be situated in the region A, the rate of 

stress accumulation near it will be enhanced due to the creeping movement across F1 and F2, and thereby 

expedite a possible movement across the second fault. The reverse will be the case if the second fault be 

situated in the region R. 

 

VI.1 Rate of change of surface displacement per year due fault creep 
Fig. 3(a)-3(c) show the rate of change of surface displacement for different y2 one year (t-T=1 year) 

after the commencement of the fault creep on F1 and F2. It is found that Rd depends upon various factors such 

that 

 (i) the inclination of F1 and F2 with the horizontal 
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 ii) the velocity of creep W1 and W2 on F1 and F2 respectively. 

Rd undergoes two discontinuities- one at y2 = 0, i.e. along the strike of the fault and another at a point 

vertically above F2. The magnitudes of these discontinuities depend upon W1 and W2, more the values of W1 

and / or W2 more the discontinuities. The effect of W1 is more pronounced on Rd and on its discontinuities, as 

expected. The position of the second point of discontinuity of Rd essentially depends upon the inclination of 

the fault. The second point of discontinuity shifted away from the strike of the fault in the positive direction 
of y2 as the inclination of F1 / F2 with the horizontal decreases. Fig. 3(b) and 3(c) indicates that effect of F1 on 

the character of Rd is more pronounced than that of F2. 

 

VI.2 Change of surface shear strain with time near the strike of the fault 

 The creeping movements of the fault F1 and F2 introduce a change in the surface shear strain E12 as 

shown in figure 4(a) and 4(b). Before the creep, E12 changes at a gradually increasing rate with time till the 

creeping movement commences. The rate of change of surface strain falls of with time after the 

commencement of fault creep. The magnitude of the surface shear strain E12 is found to decrease with time. 

The rate of release of surface shear strain essentially depends upon the creep velocities W1, W2 and also of the 

inclination of the faults. Here also the effect of W1 is more pronounced compared to that of W2. Fig. 5(a), 5(b) 

and 5(c) shows the rate of release of surface shear strain (Rs) due to fault creep on F1, F2 against y2, the 

distance from the strike of the fault. It is found that Rs has the maximum value mostly in the region 0 ≤ y2 ≤ 10 
and its magnitude is found to be of the order of 10-7 per year which is totally in conformity with observations. 

 

VI.3 Accumulation of shear stress near the mid point of the fault 

We note that the maximum possible value of accumulated shear stress near the mid points of F1 and 

F2 under the action of τ∞ would be around τ∞ sin θ1 and and τ∞ sin θ2 respectively. Fig. 6(a)-6(d) show the 

total stress accumulation τ1'2' and τ1''2'' with time t near the mid-points of F1 and F2 for various inclinations 

with horizontal. We observe that  

(i) In each case the rate of change of shear stress near the fault falls off suddenly after t = T. 

(ii) In general, more the values of W1 and W2 , more are the decreases in the rate. 

(iii) The change in τ1'2' near F1 is more prominent with the changes in W1 but changes in W2 have little effect 

on it. 
(iv) Similar results are obtained for stresses near F2. The rate of total stress accumulation get a sudden fall at t 

= T. The effect of W2 is more prominent in this case (fig.6(c)). 

(v) One interesting result has been observed in fig. 6(d), the rate of stress accumulation near F2 is found to be 

higher compared to smaller values of W1. A close observation of fig. 6(b): B, C, D also indicate similar 

results for τ1'2' near F1. 

 

VII.   Numerical Computation For Earthquake Prediction 
From the result shown in fig. 6(a)-6(d), it is possible to have an estimates of the time to the next 

possible movement of the fault. For example, let us consider a single case with θ1 = π/3, θ2 = π/4 and creep 
velocities W2 = 1.0 cm/year across F2, W1 = 0.5 cm/year and W1 = 1.0 cm/year across F1. Fig. 7(a) shows 

the total stress accumulation (τ1'2') with time t near the mid-point of F1. Assuming that at t = 0 initial stress 

(τ1'2')0 ~ 1/6 (τ∞ sin θ1 ) ≈ 43.30 bar. At T ~ 129 years the accumulated near F1 reaches the threshold level τc 

~ 130 bar, and a creeping movement of the fault starts. We assume that the stress is released by the same 

amount due to this movement and came down to its critical value 43.30 bar. After the fault creep, stresses 

will built up again at a reduced rate. It is computed from the graph that τ1'2' near F1 will again reach the 

threshold level τc at t ≈ 495 years if W1 ~ 0.5 cm/year and at t ≈ 713 years if W1 ~ 1.0 cm/year. Thus there 

would be a possible second movement after 365 and 584 years if W1 ~ 0.5 cm/year, ~ 1.0 cm/year 

respectively. On the other hand if the stress drop is at t = T is only 50% of τc then a possible second 

movement may takes place after a gap of 217 years and 288 years for W1 = 0.5 cm/year and W1 = 1.0 cm/y ear 

respectively (Fig. 7(b)), with W2 = 1.0 cm/year. 

 

VIII.   Appendix 

A1.Displacements, stresses, and strains for t > T after commencement of the fault creep- the method of 

solution 

The displacements and stresses after commencement of the fault creep have been found in the form 

given in equation (10). Taking Laplace transforms of equations (1) to (5), (12a),  (12b), (13a), (13b) and 

(14a), (14b) with respect to time t1, a boundary value problem involving      1 12 13
2 2 2
, ,u    and 

     1 12 13
3 3 3
, ,u   which are Laplace transforms of (u1)2, (τ12)2 , (τ13)2 and (u1)3, (τ12)3, (τ13)3 respectively 

with respect to t1. 
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Therefore,  

                          1
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where p is the Laplace transform variable. We have the following relations in transformed domain 
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Here,  
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To solve the above boundary value problems, a suitably modified form of Green’s function technique, 

developed by Maruyama [3] and Rybicki [4] is used 
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where Q(y1, y2 , y3) is the field point in the half space and P(ξ1, ξ2, ξ3) is any point on the fault F1 and P'(η1, η2, 

η3) is any point on the fault F2.  1 2[( ) ( )]u P is the discontinuity in 1 2( )u  across F1 at P and 1 3[( ) ( )]u P  is the 

discontinuity in 1 3( )u across F2 at P'. The Green’s function G'12(Q, P), G'13(Q, P), G'12(Q, P'), G'13(Q, P') are 

given by 
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Now P (ξ1, ξ2, ξ3) being a point on F1, 0 ≤ ξ2 ≤ l1cos θ1, 0 ≤ ξ3 ≤ l1sin θ1 and  ξ2 = ξ3 cot θ1 we introduce a 

change of coordinate axes from (ξ1, ξ2, ξ3) to (ξ'1, ξ'2, ξ'3) connected by the relations ξ1= ξ'1, ξ2 = ξ'2 sin θ1 + 

ξ'3 cosθ1, ξ3 = -ξ'2 cosθ1 + ξ'3 sin θ1). 

So on F1: ξ'2 = 0, 0 ≤ ξ'3 ≤ l1. 

Then from (A8) using (A7) we have  
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 (A10) 

Now P'(η1, η2, η3) being a point F2, 0 ≤ η2 ≤ l2 cosθ2, 0 ≤ η3 ≤ l2 sin θ2 and η2= η3 cot θ3. We also introduce a 

change of coordinate axes from (η1, η2, η3) to (η''1, η''2, η''3) connected by the relations η1= η''1, η2 = η''2 sin 

θ2 + η''3 cosθ2, η3 = -η''2 cosθ2 + η''3 sin θ2. 

So on F2: η''2 = 0, 0 ≤ η''3 ≤ l2. 

Then from (B7) using (B8)  
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Taking inverse Laplace transforms of (A9) and (B9) with respect to t1 and noting that  
   (u1)0 = 0, (u1)3 = 0 for t1 ≤ 0 
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Then finally, we can compute 1
12

2

u
e

y





 and  
1

12 F
  and  

2
12 F
 near mid point of F1 and F2 respectively. 

 

IX. Figures 

 
Fig.1: Section of the model by the plane y1=0 and coordinate system 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2(c): Region indication for positive and negative 
accumulation of Shear stress 

Fig 2(d): Region indication for positive and negative ccumulation of Shear 

stress 

Fig 2(a): Region indication for positive and negative 

accumulation of Shear stress 
Fig 2(b): Region indication for positive and negative accumulation 

of Shear stress 
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aF Fig.1: Sectioaan of the model by the plane y1=0 and 

coordinate system ig.1: Section of the model by the plane y1=0 

and coordinate system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig-3(b) : Rate of change of surface displacement per year due to fault creep 

 

Fig-3(c) : Rate of change of surface displacement per year due to fault creep 

Fig-5(a): Rate of release (/year) of surface shear strain due to 

fault creep 

Fig-4(b): Change in surface shear strain near fault, y2 

~ 0, y3 = 0 

Fig-3(a) : Rate of change of surface displacement per year due to fault creep 

Fig-4(a): Change in surface shear strain near fault, y2 ~ 0, y3 = 0 
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Fig-6(b): Change in shear stress with time near mid point of F1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig-5(b): Rate of release (/year) of surface shear strain due to fault creep 

Fig-6(a): Change in shear stress with time near mid point of F1  

Fig-6(c): Change in shear stress with time near mid point of F2 

Fig-6(d): Change in shear stress with time near mid point of F2 

Fig-5(c): Rate of release (/year) of surface shear strain due to fault creep 
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X.     Conclusion 
The non-planar structure of the strike-slip fault shows significant differences in the computations 

made in this paper, when compared to a long and plane strike-slip fault. 

The rate of change of surface displacement for a plane fault has only one discontinuity at y2 = 0, 

while for a non-planar fault, there exist a second line of discontinuity as discussed above, which is closely 

related with the inclination of the second part. Considering the rate of change (release) of surface shear 

strain per year, we find that in the present case the shape of the curve is much more complicated compare to 

a plane fault. In case of a plane fault, the curves are symmetrical about a line y2 = k, k = 0 for θ = π/2 and k 

> 0 for 0 < θ < π/2. For surface shear stress near the mid point of F1 and F2, movement on each part has some 

influence on the total shear stress accumulation near the other. These features are obviously not present in case 

of plane fault. In the present case we have considered a fault which can be represented by two planar sub-parts. 

In fact for a complicated geometrical structure, the number of sub-parts can be increased and the corresponding 
problem can be solved in a similar way. 
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