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Abstract: A layer of Rivlin-Ericksen viscoelastic fluid heated from below is considered in the presence of 

uniform vertical magnetic field. Following the linearized stability theory and normal mode analysis, the paper 

mathematically established the condition for characterizing the oscillatory motions which may be neutral or 

unstable, for any combination of perfectly conducting, free and rigid boundaries at the top and bottom of the 

fluid. It is established that all non-decaying slow motions starting from rest, in a Rivlin-Ericksen viscoelastic 

fluid of infinite horizontal extension and finite vertical depth, which is acted upon by uniform vertical magnetic 

field opposite to gravity and a constant vertical adverse free and rigid boundaries and the exact solutions of the 

problem investigated in closed form, are not obtainable. temperature gradient, are necessarily non-oscillatory, 

in the regime 
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 where Q  is the Chandrasekhar number, F is the viscoelasticity parameter and 2p  is the magnetic Prandtl 

number. The result is important since it hold for all wave numbers and for any combination of perfectly 

conducting dynamically  
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I. Introduction 
Stability of a dynamical system is closest to real life, in the sense that realization of a dynamical system 

depends upon its stability. Right from the conceptualizations of turbulence, instability of fluid flows is being 

regarded at its root. The thermal instability of a fluid layer with maintained adverse temperature gradient by 

heating the underside plays an important role in Geophysics, interiors of the Earth, Oceanography and 

Atmospheric Physics, and has been investigated by several authors (e.g., Bénard 1 , Rayleigh  2 , Jeffreys  3 ) 

under different conditions. A detailed account of the theoretical and experimental study of the onset of Bénard 

Convection in Newtonian fluids, under varying assumptions of hydrodynamics and hydromagnetics, has been 

given by Chandrasekhar  4 . The use of Boussinesq approximation has been made throughout, which states that 

the density changes are disregarded in all other terms in the equation of motion except the external force term. 

There are many elastic-viscous fluids that cannot be characterized by Maxwell’s constitutive relations or 

Oldroyd’s  5  constitutive relations. Two such classes of fluids are Rivlin-Ericksen’s and Walter’s (model B’) 

fluids. Rivlin-Ericksen  6  have proposed a theoretical model for such one class of elastic-viscous fluids.  

Bhatia and Steiner  7  have considered the effect of uniform rotation on the thermal instability of a 

viscoelastic (Maxwell) fluid and found that rotation has a destabilizing influence in contrast to the stabilizing 

effect on Newtonian fluid. The thermal instability of a Maxwell fluid in hydromagnetics has been studied by 

Bhatia and Steiner  8 . They have found that the magnetic field stabilizes a viscoelastic (Maxwell) fluid just as 

the Newtonian fluid. Sharma  9  has studied the thermal instability of a layer of viscoelastic (Oldroydian) fluid 

acted upon by a uniform rotation and found that rotation has destabilizing as well as stabilizing effects under 

certain conditions in contrast to that of a Maxwell fluid where it has a destabilizing effect.  In another study 

Sharma  10  has studied the stability of a layer of an electrically conducting Oldroyd fluid  5  in the presence of 

magnetic field and has found that the magnetic field has a stabilizing influence. 

       Sharma and kumar  11  have studied the effect of rotation on thermal instability in Rivlin-Ericksen 

elastico-viscous fluid and found that rotation has a stabilizing effect and introduces oscillatory modes in the 
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system. Kumar et al.  12  considered effect of rotation and magnetic field on Rivlin-Ericksen elastico-viscous 

fluid and found that rotation has stabilizing effect where as magnetic field has both stabilizing and destabilizing 

effects. A layer of such fluid heated from below or under the action of magnetic field or rotation or both may 

find applications in geophysics, interior of the Earth, Oceanography, and the atmospheric physics. 

Pellow and Southwell  13  proved the validity of PES for the classical Rayleigh-Bénard convection problem. 

Banerjee et al  14  gave a new scheme for combining the governing equations of thermohaline convection, 

which is shown to lead to the bounds for the complex growth rate of the arbitrary oscillatory perturbations, 

neutral or unstable for all combinations of dynamically rigid or free boundaries and, Banerjee and Banerjee  15  

established a criterion on characterization of non-oscillatory motions in hydrodynamics which was further 

extended by Gupta et al.  16 . However no such result existed for non-Newtonian fluid configurations, in 

general and in particular, for Rivlin-Ericksen viscoelastic fluid configurations. Banyal  17  have characterized 

the non-oscillatory motions in couple-stress fluid.  
Keeping in mind the importance of Rivlin-Ericksen viscoelastic fluids  and magnetic field, as stated 

above, this article attempts to study Rivlin-Ericksen viscoelastic fluid heated from below in the presence of 

uniform magnetic field, with more realistic boundaries and it has been established that the onset of instability in 

a Rivlin-Ericksen viscoelastic fluid heated from below, in the presence of uniform vertical magnetic field, 

cannot manifest itself as oscillatory motions of growing amplitude if the Chandrasekhar number Q , the 

viscoelasticity parameter F and 2p  the magnetic Prandtl number, satisfy the inequality, 
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, for all wave numbers and for any combination of perfectly conducting dynamically 

free and rigid boundaries. 

 

II. Formulation Of The Problem And Perturbation Equations 
Considered an infinite, horizontal, incompressible electrically conducting Rivlin-Ericksen viscoelastic  

fluid layer, of thickness d, heated from below so that, the temperature and density at the bottom surface z = 0  

are 0T and 0  and at the upper surface z = d are dT and d  respectively, and that a uniform adverse 

temperature gradient 









dz

dT
  is maintained. The fluid is acted upon by a uniform vertical magnetic field 

 HH ,0,0


, parallel to the force field of gravity  gg 


,0,0 . 

      The equation of motion, continuity, heat conduction, and Maxwells equations governing the flow of Rivlin-

Ericksen viscoelastic fluid in the presence of magnetic field(Rivlin and Ericksen  6 ; Chandrasekhar  4  and 

Kumar et al  12 ) are 
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Where  , p, T, ,
' and  wvuq ,,



 denote respectively the density, pressure, temperature, kinematic 

viscosity, kinematic viscoelasticity and velocity of the fluid, respectively and ),,( zyxr


.                                                                                                                                          

     The equation of state for the fluid is 

                               00 1 TT   ,                                                                             (6) 

Where the suffix zero refer to the values at the reference level z = 0. Here  gg 


,0,0  is acceleration due to 

gravity and   is the coefficient of thermal expansion. In writing the equation (1), we made use of the 

Boussinesq approximation, which states that the density variations are ignored in all terms in the equation of 

motion except the external force term. The magnetic permeability e , thermal diffusivity , and electrical 

resistivity , are all assumed to be constant. 

           The initial state is one in which the velocity, density, pressure, and temperature at any point in the fluid 

are, respectively, given by 

             0,0,0


q  ,  z  , p=p(z), T= T(z),                                                                (7)                                                                                                                                                       

         Assume small perturbations around the basic solution and let , p ,  ,  wvuq ,,


 and 

 
zyx hhhh ,,



  denote respectively the perturbations in density , pressure p, temperature T, 

velocity )0,0,0(


q and the magnetic field  HH ,0,0


. The change in density , caused mainly by the 

perturbation   in temperature, is given by 

             000 1  TT , i.e.  0                              (8)                                                                                                                                                     

                 Then the linearized perturbation equations are 
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Within the framework of Boussinesq approximation, equations (9) – (13), become 
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III. Normal Mode Analysis 
  Analyzing the disturbances into normal modes, we assume that the Perturbation quantities are of the 

form 

           )(,,,, , zKzzWhw z  Exp  ntyikxik yx  ,                                             (17)                                                                               

Where yx kk ,  are the wave numbers along the x- and y-directions, respectively,  2
1

22

yx kkk  , is the 

resultant wave number, and n is the growth rate which is, in general, a complex constant. 

Using (17), equations (14) - (16), in non-dimensional form transform to 

      DKaDQRaWaDFaD 2222222 1   ,                                         (18) 
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   And 
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,                                                                                               (20) 

Where we have introduced new coordinates  ',',' zyx  = (x/d , y/d, z/d) in new units of length d and 

'/ dzdD  . For convenience, the dashes are dropped hereafter. Also we have substituted 
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1p , is the thermal Prandtl number; 




2p , is the magnetic Prandtl 

number;  
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 , is the Rilvin-Ericksen kinematic viscoelasticity parameter;  
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,  and dDD  , and dropped    for convenience. 

      We now consider the cases where the boundaries are rigid-rigid or rigid-free or free-rigid or free-free at z = 

0 and z = 1, as the case may be, and are perfectly conducting. The boundaries are maintained at constant 

temperature, thus the perturbations in the temperature are zero at the boundaries. The appropriate boundary 

conditions with respect to which equations (18) -- (20), must possess a solution are 

     W  =  0 =  ,            on both the horizontal boundaries,                                                       (21) 

    DW = 0,                   on a rigid boundary,                                                                               (22)  

    02 WD ,              on a dynamically free boundary,                                                            (23) 

    K = 0,                     on both the boundaries as the regions outside the fluid  

                                   are perfectly conducting,                                                                          (24) 

  Equations (18) -- (20), along with appropriate boundary conditions (21) – (24), poses an eigenvalue problem 

for   and we wish to Characterize  i  when 0r . 

We first note that sinceW ,  and K satisfy  )1(0)0( WW   and )1(0)0( KK   in addition to 

satisfying to governing equations and hence we have from the Rayleigh-Ritz inequality  18     
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 Further, for )1(0)0( WW  and )1(0)0( KK  , Banerjee et al.  19   have shown that 

 

1

0

22

1

0

2
2 dzDWdzWD   and  

1

0

22

1

0

2
2 dzDKdzKD  ,                                         (26)                

                                                                                                                                                                  

IV. Mathematical Analysis 
We prove the following lemma: 

Lemma 1:  For any arbitrary oscillatory perturbation, neutral or unstable 
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Proof: Multiplying equation (20) by 
K  (the complex conjugate of K ), integrating by parts each term of the 

resulting equation on the left hand side for an appropriate number of times and making use of boundary 

conditions on K  namely )1(0)0( KK  , it follows that 
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which gives that   
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 inequality (28) on utilizing (25), gives  
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Since 0r  and 02 p , hence inequality (27) on utilizing (29), give 
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This completes the proof of lemma. 

We prove the following theorems: 

Theorem 1: If  R  0 , F  0, Q 0, 0r  and 0i  then the necessary condition for the existence of non-

trivial solution   KW ,,  of  equations  (18) - (20) and the boundary conditions (21),  (24) and any 

combination of (22) and (23)  is that 
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Proof: Multiplying equation (18) by  
W  (the complex conjugate of W) throughout and integrating 

 the resulting equation over the vertical range of z, we get 
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Taking complex conjugate on both sides of equation (19), we get 

    WpaD 1
22

,                                                                                               (32)                                                                                  

Therefore, using (32), we get  
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Also taking complex conjugate on both sides of equation (20), we get 

    DWKpaD 2
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,                                                                                             (34) 

Therefore, using (34) and using boundary condition (21), we get  
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Substituting (33) and (35) in the right hand side of equation (31), we get 
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Integrating the terms on both sides of equation (36) for an appropriate number of times by making use of the 

appropriate boundary conditions (21) - (24), we get 
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And equating the imaginary parts on both side of Eq. (37), and cancelling )0(i  throughout, we get 
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Now R   0 and Q  0, utilizing the inequalities (26) and (30), the equation (38) gives, 
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and therefore , we must have 
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Hence, if 

                 0r  and 0i , then 1
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And this completes the proof of the theorem. 

Presented otherwise from the point of view of existence of instability as stationary convection, the above 

theorem can be put in the form as follow:- 
Theorem 2: The sufficient condition for the validity of the ‘exchange principle’ and the onset of instability as a 

non-oscillatory motions of non-growing amplitude in a Rivlin-Ericksen viscoelastic fluid heated from below, in 

the presence of uniform vertical magnetic field is that 1
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, where Q  is the 

Chandrasekhar number, F is the viscoelasticity parameter and 2p  the magnetic Prandtl number, for any 

combination of perfectly conducting dynamically free and rigid boundaries. 

or 

The onset of instability in Rivlin-Ericksen viscoelastic fluid heated from below, in the presence of uniform 

vertical magnetic field, cannot manifest itself as oscillatory motions of growing amplitude if the Chandrasekhar 

number Q , the viscoelasticity parameter F and the magnetic Prandtl number 2p , satisfy the 

inequality 1
)1)(12( 22

2

2 
 F

Qp




, for any combination of perfectly conducting dynamically free and rigid 

boundaries. 

In the context of existence of instability in ‘oscillatory modes’ and that of ‘overstability in the present 
configuration, we can state the above theorem as follow:- 

Theorem 3: The necessary condition for the existence of instability in ‘oscillatory modes’ and that of 

‘overstability’ in a Rivlin-Ericksen viscoelastic fluid heated from below, in the presence of uniform vertical 

magnetic field, is that the Chandrasekhar number Q , the viscoelasticity parameter F and the magnetic Prandtl 

number 2p , must satisfy the inequality 1
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, for any combination of perfectly conducting 

dynamically free and rigid boundaries. 
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V. Conclusions 
This theorem mathematically established that the onset of instability in a Rivlin-Ericksen viscoelastic 

fluid in the presence of uniform vertical magnetic field, cannot manifest itself as oscillatory motions of growing 

amplitude if the Chandrasekhar number Q , F is the viscoelasticity parameter and 2p  the magnetic Prandtl 

number, satisfy the inequality 1
)1)(12( 22

2
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, for any combination of perfectly conducting 

dynamically free and rigid boundaries. 

The essential content of the theorem, from the point of view of linear stability theory is that for the configuration 

of Rivlin-Ericksen viscoelastic fluid of infinite horizontal extension heated form below, having any combination 

of top and bottom horizontal bounding surfaces as free-free or free-rigid or rigid-free or rigid-rigid, and the 

region outside is perfectly conducting, in the presence of uniform vertical magnetic field parallel to the force 

field of gravity, an arbitrary neutral or unstable modes of the system are definitely non-oscillatory in character 

if 1
)1)(12( 22
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, and in particular PES is valid. 
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