Analysis And Design Of Multi Storey Building By Using "STAADPRO"

Rajneesh Kumar, Abhishek Rana

Research Scholar, Department Of Civil Engineering, Shri Venkateshwara University (SVU), Gajraula, India, Assistant Professor, Department Of Civil Engineering, Shri Venkateshwara University (SVU), Gajraula, India,

Abstract:

A review of the analysis and design of a multi-storey building with STAAD Pro is carried out. Planning is done by using AutoCAD and load calculations were done manually and then the structure was analysed using STAAD Pro . The dead load , imposed load and wind load with load combination are calculated and applied to the structure. Overall , the concepts and Procedures of designing the essential components of a multi-storey building are described . STAAD Pro software also gives a detailed value of shear force , bending moment and torsion of each element of the structure which is with in IS code limits.

Keywords: STAAD Pro, Multi-storey building, dead load, imposed load, wind load, Shear force, bending moment, torsion, IS code limits.

Date of Submission: 25-03-2025 Date of Acceptance: 05-04-2025

I. Introduction

Now a days tall or multi-storey buildings has gain very much importance, because in metro Cities there is a rapid increase in population with limited land.

All people require good accommodations, aesthetic, comfort and safety. Thats the reason for increase in construction ofmulti-storey buildings.

Structural design of multi-storey buildings is basically worried with safety during ground mo-tion, serviceability what's more, potential for monetary mis fortune.

Design of structures using Limit State method Design the members are designed for the limiting bending moment and Service ability limits, hence the structures are left with minimum reserve energy. Earthquake Will cause more severe effect on tall buildings compare to small buildings. Due to earthquake .A symmetrical buildings will damage more than symmetrical buildings.In case of high rise structures horizontal loads produce develop high lateral displacements which is not desirable for the occupants and the structure it self. The enormous increase in population and scarcity of land makes the people to move from rural Areas to urban paces and construction of multi-storied buildings in small areas is being common now-a-days.

Functional designing of the building has become very important and the requireMents vary from one building to another .

Every Civil Engineer should know the usage of the Buildings by contacting the people and basic principles of designing of the R.C.C structures.

This is project is intended at Analyzing and designing the multi-storey structure using STAAD.PROV8i and STAAD.ETC. In this project, we adopted limitstate method of analysis and Design the structural members manually and using STAAD.PRO.V8i and STAAD.ETC .Manually design is done for particular beam, column and slab by using IS456:2000 and load sare dead load, imposed load and external load considered according to IS875:1987 (PARTIII).

It is the checked in STAAD.PRO.V8i and STAAD.

II. Objectives

The study aims to Analysis and design of the RCC frame structure apply Load Combination as Live load, dead load, wind load and other earthquake . These objectives are defined as follows:

Analysis of the Structure of G+5 Building Live load and Dead Load.

Analysis of the Structure of G+5 Building Wind load ,Earthquake Load and Secmic Load .

- C) Generating structural framing plan.
- D) Creating 3D Structural Model in STAAD PRO.
- E) Analysis of the Structure with Apply All Load combination.
- F) Design of G+5 RCC frame structure .

III. Literature Review

A) Ibrahim,et.al(April2019)1: Design and Analysis of Residential Building(G+4):

B) Dunnala Lakshmi Anuja, et.al (2019) 2: Planning, Analysis and Design of Res-Identical Building(G+5)By using STAAD Pro:

C) Mr K.Prabin Kumar, et.al (2018) 3:

D) Deevi Krishna Chaitanya, et.al (January, 2017) 4: Analys is and Design of a (G+6) Multi-Storey Building Using STAAD Pro:

E) R. D. Deshpande, et. Al (June,2017)5: Analysis, Design and Estimation of Basement+G+2 Residential Building:

IV. Methodology

About Staad Pro

Our project involves analysis and design of multi-storeyed[G+5]using a very popular designing Software STAADPro.We have chosen STAAD Pro because of its following.

Advantages

• easy to use interface,

• conformation witht the Indian Standard Codes,

• versatile nature of solving any type of problem,

• Accuracy of the solution.

STAAD.Pro features a state-of-the-art user interface,visualization tools, and powerful analy-sis and design engines with advanced finite element and dynamic analysis capabilities.From model generation, analysis and design to visualization and result verification, STAAD.Pro is the professionals choice for steel, concrete, timber, aluminium and cold-formed steel design of low and high-rise buildings, culverts, petrochemical plants, tunnels, bridges, piles and much more.

To start with we have solved some sample problem susing STAAD Pro and checked the accuracy of the results with manual calculations. The results were to satisfaction and were accurate. In the initial phase of our project we have done calculations regarding loadings on buildings and also considered seismic and wind loads.

Structural analysis comprises the set of physical laws and mathematics required to study and predicts the behaviour of structures. Structur alanalys is can be viewed more abstractly as a method to drive the engineering design process or prove the soundness of a design with out a dependence on directly testing it.

To perform an accurate analysis a structural engineer must determine such in formation as structural loads,geometry,support conditions, and materials properties. The results of such ananalysis typically include support reactions, stresses and displacements. This information is then compared to criteria that indicate the conditions of failure. Advanced structural analysis may examine dynamic response, stability and non-linear behavior.

Loads Considered

1.Dead load: The unit weights of plain concrete and reinforced Concrete made with sand and gravel or crushed natural stone aggregate may be taken as 24 kN/m^2 and 25 kN/m^2 respectively.

2.Imposed load:- Imposed load is produced by the intended use or occupancy of a building in cluding the weight of movable partitions ,distributed and concentracted Loads due to the impact and vibration and dust loads.

3.Wind load:- The wind speeds are assessed with the aidofanemometers or Anemographs which are installed at meteorological observatories at heights generally varying from 10 to 30 meters above ground.

4.Secmic load:- According to the severity of earthquake intensity they are divided in to zones.

1.ZoneIandIIarecombinedaszoneII.

2.ZoneIII.

3.ZoneIV.

4.ZoneV.

<complex-block>

Plan of G+5 storey building

All columns= 0.40*0.60m All beams= 0.3*0.5m All slabs= 0.125mthick

Physical parameters of building

Length= 4 bays @5.5m+ 1 bay @4m= 26m Width= 2 bays @4m= 8.0m Height= 3m+ 5 storeys @3.5m= 20.5m Live load on the floors is 2kN/ m2 Live load on the roof is 1.5kN/ m2 Grade of concrete and steel used Used M 25 concrete and Fe 415 steel

Generation of the structure & Fixing support of structure

Generation of member property

Apply of All Loads

Sructure under sesmic load

Combination under wind load

201	Sent Design Koncentration (Sentedian Design AAM Connection Artign Deck Advanced SAR Design	The second secon
		Constant Nation C
1 mar		Charles and Charle

Combination under Secmic load

Showing the analyzing window

Design of G + 5RCCBulding

Beam Design

Lead 1 Lecation Fy(Mpa) Fy(Mpa) 0 000000 Put(Kns) 31.55 As Regard(mmP) As (%) 0 0 0.0 Max(Kns-Mt) 0.39 Bar Size 1 0 0 0.0 1 Size 1 1 1	Fy(Mpa) 415 Fc(Mpa) 25 6 As Regd(mm²) 1920 As (%) 1.00	C	C Load 1 Fy(Mpa) 415 Location End 1 Fc(Mpa) 25	Load 1 Fy(Mpa) 415	000	00	Design Load		Design Paramet	er
D C Location End 1 Fc(Mpa) 2 Pul(Kna) -31.56 Aa Red(mm*) Aa Red(mm*) Aa Red(mm*) Aa Red(mm*) Aa Red(mm*) Aa Red(mm*) Bar Size 1 Quickens-Mit) 0.39 Bar Size 1 Bar No 1	Fc(Mpa) 25 6 As Regd(mm²) 1920 As (%) 1.00	C Location End	C Location End 1 Fc(Mpa) 25	D dl Transaction Trailland Dr			Load	10	Fy(Mpa)	415
Pu(Kns) -31.56 As Regd(mm*) 0 0 000 000 M2(Kns-Mt) 21.45 Bar Size 1 My(Kns-Mt) 0.39 Bar No 1	6 As Regd(mm²) 1920 As (%) 1.00	D.(Kee) 51		Location [End 1 FG(Mpa) [25	þ	q	Location	End 1	Fc(Mpa)	25
D O 000000 Mz(Sns-Mt) 21.45 Ast (%) 1 My(Sns-Mt) 0.39 Bar Size 1	As (%) 1.00	PU(N05): -21.	Pu(Kns) -31.56 As Regd(mm ²) 1920	Duffeel St. Co. As Dead(mod) 1020		000 000	Pu(Kns)	-31.56	As Regd(mm ²)	1920
My(Kns-Mt) 0.39 Bar Size 1 Bar No 1		Mz(Kns-Mt) 21.4	Mt/Kes.Mt 2145 As (%) 1.00	Pu(Kits) -31.30 As Requirer/ 1920	b	d	Mz(Kns-Mt)	21.45	As (%)	1.00
Ber No 1	Bar Size 16	My(Kns-Mt) 0.35		0 00 000 Pu(Kns) -31.36 As regulater / 1520 Mz(Kns-Mt) 21.45 As (%) 1.00	I	1	My(Kns-Mt)	0.39	Bar Size	16
	Bar No 12		My(Kns-Mt) 0.39 Bar Size 16	O C 000 000 PU(Kns.M) 21.45 M2(Kns.M) 21.45 My(Kns.M) 0.39 Bar Size 16	lh a a	0.0		8	Bar No	12
400.000 mm			My(Kns-Mt) 0.39 Bar No 12	b c -0.000 000000 -0.100 -0.100 -0.100 -0.000	400.000	000 mm				
Pu(Kns) -31.56 As Repd(mm²) D M2(Kns-Mt) 21.45 As (%) My(Kns-Mt) 0.39 Bar Size 1 Bar No 1 1 1	6 As Regd(mm²) 1920 As (%) 1.00	Dufferel 54	And and a second s	Location End 1 FC(Mpa) 25	p	q	Location	End 1	Fc(Mpa)	25
0 000 000 Pu(Kns) 3-5.6 As Regd(mm*) 1 0 0 Mz(Kns-Mt) 21.45 Bs Regd(mm*) 1 My(Kns-Mt) 0.39 Bs No 1	6 As Regd(mm²) 1920 As (%) 1.00	Defferent of	Cocaton City (Compay Lo	Location Location Location LCD	b	d	Location	End t	Fc(Mpa)	25
D C Location End 1 Fc(Mpa) 2 0	Fc(Mpa) 25 6 As Regd(mm²) 1920 As (%) 1.00	C Location End	C Location End 1 Fc(Mpa) 25	D dl Transaction Trailland Dr			Load	10	Fy(Mpa)	415
Load 1 Fy(Mpa) 2 C 0	Fy(Mpa) 415 Fc(Mpa) 25 6 As Regd(mm ²) 1920 As (%) 1.00	C Load 1 Location End	C Load 1 Fy(Mpa) 415 Location End 1 Fc(Mpa) 25	Load 1 Fy(Mpa) 415	000	09	Design Load		Design Paramet	er

Column Design

Manual Analysis (Kanis Method)

Step 1: Fixed End Moments MFAB, MFBA, MFCD, MFDC= 0 MFBC= -wl2/ 12= -10.985.52/ 12-5.665.52/ 12= -41.946KNm

Step2: Rotation Factor

cacron 1				
Joint	Member	Relativestiffness(k)	summK	RF= -0.5(k/ summK)
В	BA	(4EI/l) = 1.33EI	2.057EI	-0.323
-	BC	(4EI/l)=0.727EI	-	-0.176
С	CB	(4EI/1)=0.727EI	2.057EI	-0.176
-	CD	(4EI/l) = 1.33EI	-	-0.323

Step3: Kanis scheme and Rotation Contribution Rotation Contribution= RF[FEM+ Near end contribution+ Far end contribution] RCforBA1=-0.323[-41.946+ 0+ 0]= 13.54 RCforBC1=-0.176[-41.946+ 0+ 0]= 7.38 $\begin{array}{l} RCforCB1=-0.176[41.946+7.38+0]=-8.68\\ RCforCD1=-0.323[41.946+7.38+0]=-15.93\\ RCforBA2=-0.323[-41.9468.68+0]=16.35\\ RCforBC2=-0.176[-41.9468.68+0]=8.91\\ RCforCB2=-0.176[41.946+8.91+0]=-8.95\\ RCforCD2=-0.323[41.946+8.91+0]=-16.42\\ RCforBA3=-0.323[-41.9468.95+0]=16.43\\ RCforBC3=-0.176[-41.9468.95+0]=8.95\\ RCforCB3=-0.176[41.946+8.95+0]=-8.95\\ RCforCD3=-0.323[41.946+8.95+0]=-16.43\\ \end{array}$

Step4: FinalMoments

Joint	А	В	В	С	С	D
Members	AB	BA	BC	CB	CD	DC
FEM	0	0	-41.946	-41.946	0	0
2NEM	0	32.86	17.9	-17.9	-32.86	0
2FEM	16.43	0	-8.95	8.95	0	-16.43
FinalMoments	16.43	32.86	-32.99	32.99	-32.86	-16.43

Summ Mbc=0

-Rcb*5.5+ 32.99+ 5.66*5.5*2.75+ 10.98*5.5*2.75= 0 Rcb= 51.75KN/ m SummV= 0 Rbc+ Rcb= 10.98*5.5+ 5.66*5.5 Rbc= 91.52-51.75= 39.77KN/ m BM at center,91.52*2.75-32.99-10.98*2.75*1.375-5.66*2.75*1.375= 155.77KNm

-Rba*3+ 32.86= 0 Rba= 10.95KN/ m,Rab= -10.95KN/ m Rcd*3-32.86= 0 Rcd= 10.95KN/ m,Rdc= -10.95KN/ m ForBc,at0m,Rbc= 39.77KN/ m At5.5m,Rbc-10.95*5.5-5.66*5.5= -26.28KN/ m

Beam Design (IS456:2000)

Width of support= 400mm Clearspan= 5.5m Load= 21.16KN/m² b= 300m m, D = 500m m $fc k = 25N/mm^2, fy = 415N/mm^2$

Step1: Effective Length

d= Dd= 500-25= 475mm 1.clear span+ Effective depth= 5.5+ 0.475= 5.975m 2.clear span+ c/ c distance between supports= 5.5+ 0.2+ 0.2= 5.9m

Step2: UltimateMoment

Self Weight of Beam(Wb) = b*D*25= 0.3*0.5*25= 3.75KN/ m Totalload(W)= Wb+ w= 3.75+ 21.16= 24.98KN/ m Now,Ultimate Load(wu) = 1.5*24.98= 37.337KN/ m Now,Ultimate Moment(Mu)= Wul2/ 8= 37.337*5.92/ 8= 162.63KNm Now,From page 96 IS456 Mulim= 0138*fckbd2= 0138*25*300*4752= 233.52KNm Mu less than Mu lim,Hence it is Under reinforced beam

Step3: Calculation of area of steel

 $\begin{aligned} & \text{Mu} = 0.87 \text{fy} \text{Astd} [1-(\text{fy} \text{Ast}/\text{fckbd}) 162.63^{*}10^{6} = 0.87^{*}415^{*} \text{Ast} *475^{*} [1-(415^{*} \text{Ast}/25^{*}300^{*}475) \\ & \text{Ast} = 1085.56 \text{ mm2} \\ & \text{Using 20 mm dia bars, ast} = (\text{pi}/4)^{*}202 = 314.45 \text{ mm}^{2} \\ & \text{No of bars} = (\text{Ast}/\text{ast}) = (1085.56/314.45) = 3.45 = 3 \\ & \text{Provide 3no 20mm dia bars} \\ & \text{Actual Ast} = 3^{*} (\text{pi}/4)^{*}202 = 942.47 \text{mm}^{2} \\ & \text{Min Ast} = 0.85 \text{bd}/\text{fy} = (0.85^{*}300^{*}475)/415 = 291.86 \text{mm}^{2} \\ & \text{Max Ast} = 0.04 \text{bd} = 0.04^{*}300^{*}475 = 6000 \text{ mm}^{2} \end{aligned}$

Step4: Shear Reinforcement

Factored Shear force= Wul/ 2= 37.377*5.9/2=110.26KN/ m From page 72, IS 456, Nominal shear stress(Tv)= (Vu/ bd)= ($110.26*10^3/300.475$)= 0.77N/ m m Now,% of tension Reinforcement P= (Ast/ bd)*100= (942.47/300*475)*100= 0.66%

Step5: Design Shear strength of concrete

Page 73, table 19 IS 456 0.50, 0.49, 0.75, 0.57By inter polation, Tc= 0.49+((0.57-0.49)/(0.75-0.50))*(0.66-0.5)Tc= 0.54N/ mm, Tv grater than Tc, Shear reinforcement required

Step 6 Shear Reinforcement

Vuc= Tcbd= 0.54*300*475= 76.95KN Now,Shear to be carried by stirupps Vus= VuVuc= 110.2676.95= 33.31KN Provide 8mm diameter 2legged vertical stirrups Asv=(pi/4)*82* 2=100.53mm2 SpacingSv= (0.87*415*100.53*475/ 33.31*1000)= 517.5mm Frompage 48,IS 456, 1.Minimum Spacing= (ASv/ bSv)?(0.4/ 0.87fy) Sv= (ASv0.87fy/ 0.4b)= (100.53*0.87*415/ 0.4*300) 2.Spacing= 0.75d= 0.75*475= 356.25mm 3.300mm Provide 8 mm dia 2 legged vertical stirrups@300mmc/ cspacing.

Step7:Check for Deflection

From page38,IS456 % of steel= 0.66% Fs= 0.58fy*(Astreq/ Astprov)= 0.58*415*(1058.6/ 942.47)= 277.24N/ mm² From fig 4,IS456 Modification factor(k)= 1.05 Step 7:Development Length (l/ d)max = 20k= 20*1.05= 22 (l/ d)prov= (5000/ 475)= 12.42 (l/ d)max greater than(l/ d)prov,Safein Deflection.

Column Design (IS456:2000)

Axial load= 2392KN Size of column,L= 300mm,b= 400mm

Step1: %of Steel

Pt greater then 08%, Pt less than 6% Assuming%= 1.0 Asc= 0.01Ag Ac= Ag-Asc= Ag-0.01Ag= 0.99Ag

Step2: Depth Required

Pu= 0.4fckAc+ 0.67fyAsc 2392*10³= 0.4*25*0.99Ag+067*415*0.01Ag Ag= 188636.09mm D= (188636.09/ 400)= 471.59 ProvideD= 480mm ProvideAg= 192000mm²

Step3: Check for eccentricity and Slenderness ratio

$$\begin{split} & \text{Emin} = (\text{L}/500) + (\text{D}/30) = (3000/500) + (6000/30) = 26\text{mm} \\ & \text{Emin greater than } 20 \\ & \text{Emax} = 0.05\text{D} = 0.05*480 = 24\text{mm} \\ & \text{Emin less than Emax,ok} \\ & \text{Effective length/least lateral dimension} = 3000/400 = 7.5 \text{ less than } 12 \\ & \text{Hence,it is a short column} \end{split}$$

Step4: Area of steel

2392*10³= 0.4*25*0.99*192000+0.6*415*Asc Asc= 1972.69mm² Use 16 mm dia bars,No of bars= (1972.69/(pi/4)*162=9.81=12bars

Step5: Design of Lateral Ties

Dia of lateral ties not less than(1/4)*dia of reinforcement= (1/4)*16= 4mm But not less then 6mm Then provide 6mm dia of lateral ties Spacing not greater than b= 400mm 16*16= 256mm 300mm Provide 6mm dia,256 mm spacing of lateral ties SlabDesign(IS456)

Step1.

Lx= 4mLy= 5.5m. Ly/ Lx= 1.37lessthan2. Hence, it is two-ways lab. Liveload= $2KN/M^2$ fck= $25N/mm^2$, $fy = 415N/mm^2$, b(width) = 1000mm

Step2.Estimations of slab thickness

Aslx grater than 3.5, Hence(1/d) is assumed as same for one way slab. (1/d)= 25 Effective depth(d)= 4000/25=160mm Over all depth(D)= 160+25=185mm

Step3: Effective length

Leff = 4 + 016 = 4.16m

Step4: Selfweight

Self weight of the slab= D25= 18525= 4.625KN/ m² Live load= 2KN/ m² Floor finish= 1KN/ m² Total load= 7.625KN/ m² Wu= 1.57.625= 11.43KN/ m²

Step5: Calculation of ultimate moment

From table 26,IS 456 alphax= 0.083,alphay= 0056 Mx=alphax Wuleffx²=0.083*11.43*4.162=16.41*KNm* My= alphayWuleffx²= 0.056*11.43*4.162= 11.07*K N m* Vu=(Wuleff)/2=(11.4* 4.16)/2=23.77KN

Step6: Check for depth

Mulim=0.138fckbd² Mulim is maximum of Mx and My=16.41KN/m² 16.41 * 10⁶=0.138 25 103 1² d=68.96 mm less than d prov

Step7: Calculation of reinforcement

 $\begin{array}{l} Mu = 0.87^{*} fy^{*} A st^{*} d^{*} (1 - (fy A st) / (fc k b d)) \\ 16.41^{*} 10^{6} = 0.87^{*} 415^{*} A \, st \, ^{*} 160 (1 - (415 A \, s \, t) / (25^{*} 1000^{*} 60)) \\ A st = 292.97 \, \text{mm}^{2} \\ A dopt \ 10 \text{mmdia}, \text{Spacing} = (ast 1000 / \, \text{Ast}) = ((pi / 4)^{*} 10^{2} \, \frac{1}{2} 000 / \, 292.97) = 268 m \, m \\ \text{Provide10 mm diameter } @268 \, \text{mm c/ c spacing as main reinforcement} \end{array}$

Step8: Calculation of distribution Reinforcement

Mu=11.04KNm,d=150mm(160-10) 11.04*106=0.87*415*Ast*150*(1-(415Ast)/(25*1000*150)) Ast=208.66mm² Assume 8mm dia,spacing=((pi/ 4)*8² ±00/ 208.66)=240m m Provide 8mm dia meter@240mmc/ c spacing as distribution reinforcement.

Step9: Check for Shear

 $Tv = (Vu/bd) = (23.77*103/1000*160) = 0.14N/mm^{2}$ Tc,Pt = 100Ast/bd = (100*292.97)/1000*160 = 0.18 and M25 grade Tc = 0.31N/mm² Tv less thanTc,Hence satisfied the criteria. Step 10:Check for Deflection (l/d)prov = (4160/160) = 26 (l/d)permitted = (l/d)basic*k*t = 20kt Kt = fs = 0.58fy(Astreq/Astprov) = 0.58*415*(292.97/314.15) = 224.47N/mm² Kt = 2.0 (l/d)permitted = 20*2.0 = 40 (l/d)permitted greater than(l/d)prov

Step11: Calculation of reinforcement in edge strip

Ast prov= (0.12/100)*1000*185=222mm² Assume 6mm dia meter,spacing= (ast1000)/Ast=(pi*62*1000/4)/222=230mm Provide 6mm dia@230mmc/ c in edge strip.

Step12: Torsion steel at the corner

Area of reinforcement to be provided= $(3/4)*Ast=(3/4)*292.97=219.20mm^2$ Distance up to which torsion reinforcement is to be provided (1x/5)=(4000/5)=800mmAssume 6mm dia bars, Spacing= $((ast*1000)/Ast)=((pi/4)*6^2*000)/292.27)=96.7=100mm$ Provide 6mm dia @100 mm c/c in both the direction at a distance of 800 mm@4 Corners.

Analysis Results

Some of the sample analysis results have been shown below forbeam Number 64 which is at the roof level of 1st floor

				500.000	
		Length	- 5500		300.000
Physical	Properties (Uni	t: mm)			
Ax	150000	bx	2.81737e+00		
Ay	150000	by:	1.125e+009	Anning 1	The second se
Az	150000	12	3.125e=009	Parangerine	mange Property
D	500	w	300		
distant of	Properties				
Fiastic	Ex(kN/mm2) 12	1 7105	Departurko(m2) 240	2.61	an a
Poisso	0 0	17	Abba 18.0	05	CONCRETE ~
					Assign Material

Property of baem no-133

reconnectly 110	perty coading	Shear bern	ang	Deflection	Concr	rete Design	
			Bear	n No = 133			
91	947.96					4287.55	0.05
Section Force	Fy	Mz	^	Dis mn	roximat t. n	e 2nd order B Fy N	ffect Mz kNm
Section Force	Fy N	Mz kNm	^	Dis 0.000	roximat t. n	e 2nd order B Fy N 37994.675	ffect Mz kNm 29.496
Section Force	Fy -15224.204 -21676.564	Mz kNm -12.250	^	O.000	roximat t. n	e 2nd order B Fy N 37994.675	Mz kNm 29.496
Section Force Dist. mm 3666.666666 4125 4583.3333333	Fy N -15224.204 -21076.564 -28528.924	Mz kNm -12.250 -3.740 7.804	~	O.000	t. n tion Ty	E 2nd order E Fy N 37994.675	ffect Mz kNm 29.496
Dist. mm 3666.666666 4125 4583.333333 5041.666666	Fy N -15224.204 -21876.564 -25828.924 -35181.284	Mz kNm -12.250 -3.748 7.804 22.404		O.000	t. n tion Ty d Case	e 2nd order B Fy N 37994.675 pe : 5:DL	ffect Mz kNm 29.496
Section Force Dist. mm 3666.666666 4125 4583.33333 5041.666666 5500	Fy N -15224.204 -21076.564 -28528.924 -35181.284 -4183.643	Mz kNm -12.250 -3.740 7.804 22.404 40.053		O.000	t. n tion Ty d Case Bending	e 2nd order B Fy N 37994.675 pe : 5:DL a - Z	Mz kNm 29.496
Section Force Dist. mm 3666.666666 4125 4583.333333 5041.866666 5500	Fy N -15224 204 -21076 564 -28528 924 -35181 284 -41833 643	Mz kNm -12.250 -3.748 7.804 22.404 40.053		App Dis mn 0.000 Selec Load ()	t. n tion Ty d Case Bending	e 2nd order B Fy 37994.675 pe : 5:DL g - Z	Mz kNm (29.496
Section Force Dist. mm 3666.66666 4125 4583.333333 5041.686666 5500	P -15224 204 -21076 564 -26528 924 -35181 284 -41833.643	Mz kNm -12.250 -3.740 7.804 22.404 40.053		O.000 Selection	tion Ty d Case Bending Shear -	e 2nd order B Fy 37994.675 pe : <u>5:DL</u> g - Z C Y C	Mz kNm 29.496) Bending - Y) Shear - Z
Section Force Dist. mm 3666.666666 4125 4583.333333 5041.686666 5500	P -15224 204 -21076 564 -26528 924 -35181 284 -41833.643	Mz kNm -12 250 -3.746 7.804 22.404 40.053		App Die mn 0.000 Selec Loac	t. n tion Ty d Case Bending Shear -	e 2nd order B Fy N 37994.675 pe : [5:DL g - Z Y C	ffect Mz kNm 29.496

Shear bending of beam no-1	33	re1 - Beam			×	
	Geometry	Property Load	ing Shear Bendir	ng Def	flection Concrete Design	
				Beam N	No = 133	
	91				-0.002	
		.004				
-	Deflect	on			Dist. Disp. mm mm	
	36	Dist D mm r 66.666666 -0.00	nm ^		0.000 0.004	
-	41 45	25 -0.00 83.333333 -0.00	3		Selection Type 5:DL ~	
	50	41.666666 -0.00 00 -0.00	2		Global Deflection	
			~		O Local Deflection O Z Dir	
	Note: Dis	placements betw	een end points are	calcula	ated based on first order effects only.	
1	<u> </u>				Print Close	
Deflection of beam no-133						
St.	tructure1 -	Beam			>	<
Geo	metry Prop	Bea	Shear Bendin	g De	flection Concrete Design	
i i i i i i i i i i i i i i i i i i i					1400.000	
					1.00.000	
		Le	ngth = 3000		600.000	
P	Ax 24 Ay 24 Az 24 D 40	erties (Unit: mm 00000 bx 00000 by 00000 1z	7.51	1249e+ +009 +009	Assign/Change Property	
M	laterial Prope	rties				
	Elesticity(kN Poisson	(mm2) 21.718 0.17	5 Density Alpha	(kg/m3	2402.61 1e-005 Aexion Material	
					Print Close	
Property of Coloum no-163						
	tructure1 -	Beam	Charles Daniel			<
Geo	ometry Proj	berty Loading	Shear bendin	De De	eflection Concrete Design	
				Beam I	No = 163	
					13.24	
	85		093.96		91	
	-6.46		303.30			
	4					
Se	ection Force	9			Dist. Fy Mz	
	Dist.	Fy	Mz		mm Ň kNm	
2	2000	-6567.220	6.673		0.000 -6567.220 -6.462	1
2	250 2500	-6567.220	8.314 9.956		Selection Type Load Case : 5:DL	

-6567.220

13.240

3000

Shear bending of Coloum no-163

• B

O Shear - Y

Z

Print

O Bending - Y

Close

O Shear - Z

V. Results & Discussion

BEAMNO.133 DESIGN RESULTS M25 Fe415 (Main)Fe415(Sec.) LENGTH:5500.0mm SIZE:500.0mmX300.0mm COVER:25.0mm

Deflection of Coloum no-163

Beam

Summary of Reinforcement Area (Sq.mm) Table5 1: Summary of Reinforcement beamno 133

	140103.1	. Summary of K	cimoreciment bea	11110.135	
Section	0.0mm	1375.0mm	2750.0mm	4125.0mm	5500.0mm
TOPREINF.	286.95(sqmm)	286.95(sqmm)	286.95(sqmm)	286.95(sqmm)	535.43(sqmm)
BOTREINF	286.95(sqmm)	286.95(sqmm)	286.95(sqmm)	286.95(sqmm)	286.95(sqmm)

Summary of Provided Reinforcement Area (Sq.mm)

Table5.2:	Summary	of Provided	l Reinforcem	ent beamno.133	

Section	0.0mm	1375.0mm	2750.0mm	4125.0mm	5500.0mm
Toprein.	3-16i2layers(s)	3-16i1layers(s)	3-16i1layers(s)	3-16i1layers(s)	3-16i2layers(s))
Botrein	3-16i2layers(s)	3-16i1layers(s)	3-16i2layers(s)	3-16i1layers(s)	3-16i2layers(s))
Shear rein	2leg12i@170mmc/ c	2leg12i@170mmc/ c	2leg12i@170mmc/ c	2leg12i@170mmc/ c	2leg12i@170mmc / c

Shear Design Results at Distance D (Effective Depth) from Face of the Support

Shear Design Results at 665.0 mm away from STRAT SUPPOTS VY= 41.27MX= 0.30LD= 9 Provide 2 legged 12i@170mmc/ c Shear Design Results at 665.0 mm away from END SUPPOTS VY= -56.55MX= 0.35LD= 10 Provide 2 legged 12i@170mmc/ c

Column No.163 Design Results

M20Fe415(Main) Fe415(Sec.) LENGTH:3000mm CROSS SECTION:600.0mmX400.0mmCOVER:40.0mm **GUIDING LOAD CASE:1 END JOINT:85 SHORT COLUMN REQD.STEEL AREA:1920Sq.mm. REQD.CONCRETE AREA:238080Sq.mm. MAIN REINFORCEMENT:Provide12-16dia.(1.01%,2412.74Sq.mm.) (Equally distributed) TIE REIN FORCEMENT:Provide 12mm dia.rectangular ties @225mmc/ c SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED(KNS-MET) Puz:3276.00Muz1:107.30Muy1:169.13 INTERACTION RATIO:0.20(asperC1.39.6, IS456:2000) SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED(KNS-MET) WORST LOADCASE:1 END JOINT:85Puz:3423.82Muz:133.16Muy:212.46IR:0.16

Element Design Summary

ELEMENT LONG.REINF MOM-X/ LOAD TRANS.REINF MOM-Y/ LOAD (SQ.MM/ME)(KN-M/M)(SQ.MM/ME)(KN-M/M) 286TOP:126.0.17/ 10126.0.11/ 10 BOTT:126.0.00/2126.0.00/3 287TOP:126.0.14/9126.0.10/9 BOTT:126.-0.03/ 1126.0.00/ 1 288TOP:126.0.00/ 3126..07/ 10 BOTT:126.-0.26/ 10126.-0.04/ 2 289TOP:126.0.16/ 10126.0.10/ 10 BOTT:126.0.00/2126.0.00/4 290TOP:126.0.13/9126.0.09/9 BOTT:126.-0.03/1126.0.00/1 291TOP:126.0.00/ 0126.0.07/ 9 BOTT:126.-0.23/10126.-0.05/2 292TOP:126.0.16/ 10126.0.10/ 10 BOTT:126.0.00/2126.0.00/3

VI. Conclusions

1.By Using STADDPro., analysis and design of multi-storey building is easier and quick process than manual process.

2. Proposed size of the beam and coloumn can be safely used in the structure.

3. The structure is safe in shear bending and deflection.

4. There is no hazardous effect on the structure due to wind load and seismic load on the structure.

5. The structure we taken is stable and structurally defined using various loads and combination.

6. The deflection value is more in WL(WindLoad) combination than the SL (Seismic Load) combination.

7.To know the behaviour of the structure by a applying various loads like dead load, live load, wind load and seismic load by using staad.pro.And also find out the Shear forces, displacement, bending and reactions of structure.

8.By using staadpro, we performed dynamic analysis. So that, the results obtained in Staad pro is more effective as compared to analysis and design performed by theoretical method.

References

- [1] Design And Analysis Of Residential (G+4), Ibrahim, Et.Al (Aprial 2019).
- [2] Planning, Analysis And Design Of Residential Building (G+5) By Using STAAD Pro, Dunnala Lakshmi Anuja, Et. Al (2019).
- [3] A Study On Design Of Multi-Storey Residential Building, Mr.K.Prabin Kumar, Et.Al (2018).
- [4] Analysis And Design Of A (G+6) Multi -Storey Building Using STADD Pro, Deevi Kirshna Chaitanya, Et.Al (January, 2017).
- [5] R. D. Deshpande, Et.Al (June 2017): Analysis, Design And Estimation Of Basement + G+2 Residential Building.
- [6] Agarwal Pankaj And Shrikhande Manish "Earthquake Resistant Design Of Structure"PHL Learning Pvt. Ltd. New Delhi-2010.
- [7] Murty C.V.R. And Jain. S.K. "A Review Of IS-1893- 1984 Provisions Of Seismic Design Of Buildings". The Indian Concrete Journal. Nov. 1994.
- [8] Thesis Of Mr. Aslam, ANNA UNIVERSITY: CHENNAI, 60005. April 2012. Sesimic Analysis And Design Of Multi Storey Hospital Building.
- [9] M.L. Gambhir, Fundamentals Of Reinforced Concrete Design, New Delhi-110001:PHI Learning Private Limited, 2010.
- [10] Sarkar P. Agrawal, R And Menon, "Design Of Beam, Coloumns Joints Under Seismic Loadings" A Review. Journal Of Structural Engineering SERC, Vol.33. No.6. Feb. 2007.
- [11] 20
- [12] IS 875 (Part2) Imposed Loads (Second Revision). New Delhi 110002 : Bureau Of Indian Standards.
- [13] IS 456 -2000, Design Of RCC Elements
- [14] IS 1893 (Part 1):2002- For Earthquake Design
- [15] IS 875 (Part 1) Dead Loads
- [16] IS 875 (Part 3)- Wind Loads
- [17] SP-16