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Abstract: Let N, be the number of real roots of the algebraic equation
n
f(X) =D _&X" =0 where &, X" are independent random variables assuming real values only.
k=0
Then there exists an integer nq such that for each n>ng, the number of real roots of most of the equations f(x)=0

is at least en log n except for a set of measure at most L
(€0 l0gn,)
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I.  Theorem
Let f,(x,w) be a polynomial of degree n whose coefficients are independent random variables with a

o
common characteristics function exp \— C|t| ) where a=1 and C is a positive constant. Take, {e,}to be any

sequence tending to zero such that e, log n tends to infinity as n tends to infinity. Then there exists an integer ng
such that for each n>ny the number of real roots of most of the equations f(x)=0 is at least en log n except for a

I
(€0 logn,)

set of measure at most

I1.  Introduction
Let N, be the number of real roots of the algebraic equation

f =Y Ex =0

where ikxvare independent random variables assuming real values only. Several authors have estimated
bounds for N, when the random variables satisfy different distribution laws. Littlewood and Offord [2] made the

first attempt in this direction. They considered the cases when the ékXV are normally distributed or uniformly
distributed in (-1, +1) or assume only the values +1 and —1 with equal probability. They obtained in each case

that
p(Ns Moon 1, A
logloglogn logn

Samal [3] has considered the general case when the ikXV have identical distribution, with exception
zero, variance and third absolute moment finite and non-zero. He has shown that N,>s)logn outside an
exceptional set whose measure tends to zero as n tends to infinity, where s, tends to zero, but s, log n tends to
infinity.

Samal and Mishra [4] have considered the case the ?;kXV have a common characteristics function exp

a - -y .
— C|t| where C is a positive constant and @ > 1. They have shown that

. plogn
loglogn

DOI: 10.9790/3008-1103031218 www.iosrjournals.org 12 | Page



Strong Result for Level Crossings of Random Polynomials

outside an exceptional set measure at most

l,l'
(loglogn)(logn)*™*’
uloglogn

logn
In all the above cases the exceptional set depends upon n. Evans [1], was the first to obtain ‘strong
result’ for these bounds. In such case the exceptional set is independent of the degree n of the polynomial. We

use the term ‘strong result’ in the following sense:
All the above results are of the form

ifl<a<?2,ifo=2

N
P L > | —las in tends to infinity
r an

whereas the theorem of Evans is of the form

Nn

P Sup > WL | — Las ng tends to infinity.

r L N>Ng n

Evans [1] has shown, in case of normally distributed coefficients, that there exists an integer nq such
that for n>n,,.

N > ulogn
loglogn
u'loglogn,

except for a set of measure at most
logn,

Samal and Mishra [5] have shown in the case of characteristic function exp (— C|t|a ) that for n>n,

S ulogn
loglogn

outside an exceptional set of measure at most
!

1l
logn,
loglogn,

where o>1.

a-1

log

In [7], they have considered the ‘strong result’ in the general case. Assuming that the random variables (not
necessarily identically distributed) have exception zero, variance and third absolute moment non-zero finite,
they have shown that for n>n,.

N> (ulogn)/log{(K,/t,)logn}

outside a set of measure at most
]

v

logn,

log EﬂgIogn0

n0

log
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. H I:)n . .. KnO
provided lim—"is finite and log logn, |=0 (logn) where

n
—© t o

K.=maxXo, t.= maxo,and max’cvczv,rsvbeing the variance and third absolute moment

0<v<n 0<v<n 0<v<n
respectively of & .
Our object is to improve the ‘strong result’ for lower bound in case of characteristic function exp

(— C|t|a ) We have shown that for n>no.
N.>€ logn

’

U3
enO Iogno

Outside an exceptional set of measure at most where
€, —0,but € ,logn — o .

The result of Evans [1] is a special case of ours and is obtained by taking o=2 and
€, = (Ioglog n)‘l in our theorem 1. The result of Samal and Mishra [5] is also a special case of our theorem

1. On the other hand our exceptional set is smaller.

All authors who have estimated bounds for N,, have used one kind of basic technique originally used by
Littlewood and Offord [2].

We shall denote [ for positive constants which may have different values in different occurrences.

We suppose always that n is large so that any inequalities true when n is large may be taken as satisfied.
Throughout the paper, [x] will denote the greatest integer not exceeding X.
It may be noted that although Evans [1] is a special case of ours, a much better estimate for the lower
bound with smaller exceptional set can be derived from our theorem 1. For example, if we take 0=2,

€, = (loglogn)™ where 0<p<1, then for n>n,.
logn
(loglogn)®

outside an exceptional set of measure at most
P
p(loglogn,)
logn,
Lemma 1.2.

n

If a random variable { has characteristic function exp (— C|t|OL ), then for every e>0

21+th 1
P {g>e}< ey
l+a €
This lemma is due to Samal and Mishra [4].

Proof of the Theorem

Take constant A and B such that 0<B<1 and A>1. Choose B, such that  and both tend to infinity as

logB,,
m tends to infinity. Let

A= mz’“Bn,Mn:{Z“Bn“(%ﬂ+l. (L.1)

So HlﬁnaSMnSHana
We define

CD(X) =X [togx J+x

DOI: 10.9790/3008-1103031218 www.iosrjournals.org 14 | Page



Strong Result for Level Crossings of Random Polynomials

Let k be the integer determined by
@Bk +7)M®™7 <n <8k +11)M (1.2)

logn
The first inequality gives k < g . The second inequality gives

logB,,
llog <{log(8k +11)}* + (8k +11)log(8k +11) + (8k +11)logM,
<2(8k +11)+ (8k +11)* +(8k +11)logM

<uk®logM,

So
logn , | logn
k> > .
“\/logMn ILl\/logﬁm

Thus
, | logn logn

<k <p |[——. 13

By the condition imposed on B, it follows that k tends to infinity as n tends to infinity. We have
f(x)=U_+R, atthe points

1/a
X.,=11- L (1.4)
o(4m+M*™

form=[K/ 2]+ L[K/ 2]+ 2, e k  where

um:zgvxv,Rm:(z £y }iva

the index v ranging from @(4M+1)M*™* +1 1o e(4m+3)M ™ in > from 0 to
1

P(Am+1)M*™ and from @(4m+3)M*™* +1to ninD’ . Wealso have
3

f(XZm) :U2m+R2m’f(X2m+l) :U2m+l+R2m+l (1.5)

Obviously U, and U,,.; are independent random variables. Again it follows from (1.3) that 2k+1<n
for larger n. Also the maximum index in Uy, for m=k is @(8K +7)M®*"  which, by (1.2) is consistent
with (1.5).

1/2
Let V, = (Z:XOLV m] . Then
1

(p(4m—1)|\/|4m_1n+l
V(Xm:ZX(XVm> Z X(XV
1

m
(p(4m—1)M4m_1n+l

m

> %D(4m+1)M4m ] }_ (P(4m -1)M 4m -1n X2¢)(4m+l)Mn4m

4m _ ¢(4m-1) I P
> {(p(4m +1)M 0 >{1 —(p(4m+l) M }(e I A)

> {(p(4m +mAm ) }(B/ Ae (1.6)

when n is large
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Now we estimate
P=P, {(U 2V om U omii< _V2m+1)U (U am<—Voml omit>Vonma )}

P, {(U o>V om PTU 50<=Von ) + Pr(U o< Vo) PrU 200>V o )}

Since the characteristic function of & is exp (— C|t|a), the characteristic function of U,,, is therefore

00|l [ ol V)
4
where the index V ranges from @@m—-1)M™* +1 to@(Bm+3)M,*"* inz . Therefore the
4

characteristic function of U, /V . iSexp {(— C|t|a)},which is similarly also the characteristic function

U !V omay - Thus the characteristic function is dependent on m.

Let F(x) be the common distribution function. Hence
P AU 50>Vom) =PrU 5/ V 5> 1) =1-Pr(U ,,/V ,, <1) =1- F(1).}

Thus P= {1 — F() JF(-1) + F(-1){1 - F(1)} = 2F(-1){1 - F(1)} = (say) .

Obviously 6>0.
1.2. We shall need the following lemmas.
Lemma 1.2.
ZQVXVm <V |,/ 2 except for a set of measure at most
3
21+2(1 CAe ) )
———expy (dm+1)"M< _ (for sufficiently large n.
B+ a) p{( ) } y larg
Proof.

The characteristics function of

D ey, is exp{— "> x™, }
3 3

1+2a
< 27°°C
(1+ a)va mXuv 0
But
0 Xa{(p(4m+3)M4m+3+1}
Doxvp< Y XY= i m
3 ‘P(4m+3)M4m+3+l 1_ X m
(P(4m+3)M4m+3+1
= p(4m + 3)MAM3) 1
(p(4m + 3)M 4m+3+1
Since
(P(41T1+ 3) I\/IArm +3+ 1> (4m + 3)['09(4m+3)]+(4m+3) M n4m+3
> (4m + 1) [log(4ml) [+ (4m+1)+2 M n4m+1 M n2
>e(4m+1)(4m+1DM, " M.’
We have

DX <p(dm+1)M, " exp{— (4m +1)? an}
3
Hence using (1.6), we obtain

1+2a
P<Z " expi—(4m+1)>M.’
' B(l+a) p{ ( ) }

as required
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Lemma 1.3.

1
Z:?;VXv ol <A (Z&VXV mj except for a set of measure at most
m

2 2

This follows directly from lemma 1.1.
1.3. Now

21+2(x C
A+ o))

1/ a

1/a
A (2gvxvmj < fo(dm—D)M, " 41
m\ 2

1/a
) 1
=\ Am-1)M, " 1+
o( ) ( @(4m_1)Mn4m1j

< leakm {(P(4m _1)Mn4m_1}l/a
_ gliay {(4m _])ILOS(MD =MD £y am-1 }1/0

1/a _ 1\[LOG(4M-1)+(4M-1) am-1 ) 1@
<{2 }\‘m{(4m 1) M, }}

(4m+1)*M, |
m /o
< 2 olam+m, |
16m*M, |
1/a
20° (Aejvn‘““
< n\ B
{16m?>M, |
1/a 1/a
2)° (Aejvn‘““ Be (Aejvn“
< n\ B < n\ B
16m*M, | ™, }
<1Vm
2

The last two steps above follow from (1.1) and (1.6). Hence by using lemmas 1.2 and 1.3, we have Ry,
<V, for every sufficiently large n except for a set of measure at most

uexp{— (4m+1)*M,* }+x“L < uexp{—(sznZ)}UfL
Thus we have i i

IR, <V, nand|R,, [ <V

for m=mg, mg+1........ k, where my=[k/2]+1
The measure of the exceptional set is at most

2m+1 2m+1
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yexp{—(4m2|v| n2}+ /1'“ < uexp{— (2m+1)M nz)}+aL

a

2m 2m+1
<,uexp{(—m2Mnz)}Jr}f:—2 (1.7)

1.4. We define the events E,, and F, as follows:
Em:{U2m>V2m: U2m+1<'V2m+l}
Fm:{U2m<V2ma U2m+l>'V2m+l}
We have shown earlier that
P.(E,uF, )=6>0
Let nm be a random variable such that it takes value 1 on Em Ufm and zero elsewhere. In other words
=1, with probabilitys
Mm ] .
=0, with probability 1-6
Let 1, are thus independent random variables with E (1,,)=6 and V ()= 8 — 8° <1.
We write

0if |R,,| <V,,and |R,,..| <V
1 otherwise

2m+1

I11.  Conclusion
n
By considering the polynomial f (X) = Zékxv =0
k=0
where ikXV are independent random variables assuming real values only we found that the number of zeros of
the above polynomial of the equations f(x)=0 is at least (en log n) except for a set of measure at most  for an

integer n>n, the number of real roots of most _H
(enO logn, )
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