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Abstract: Let Nn be the number of real roots of the algebraic equation 
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xξ are independent random variables assuming real values only. 

Then there exists an integer n0 such that for each n>n0 the number of real roots of most of the equations f(x)=0 

is at least en log n except for a set of measure at most 
 

.
nlog

μ

00n


    

1991 Mathematics subject classification (Amer. Math. Soc.): 60 B 99. 

Keywords and Phrases: Independent identically distributed random variables, random algebraic polynomial, 

random algebraic equation, real roots 

 

I. Theorem 
Let fn(x,w) be a polynomial of degree n whose coefficients are independent random variables with a 

common characteristics function exp  αtC , where α=1 and C is a positive constant. Take, {en}to be any 

sequence tending to zero such that en log n tends to infinity as n tends to infinity. Then there exists an integer n0 

such that for each n>n0 the number of real roots of most of the equations f(x)=0 is at least en log n except for a 

set of measure at most 
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II. Introduction 
Let Nn be the number of real roots of the algebraic equation 
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where 
ν

k
xξ are independent random variables assuming real values only. Several authors have estimated 

bounds for Nn when the random variables satisfy different distribution laws. Littlewood and Offord [2] made the 

first attempt in this direction. They considered the cases when the 
ν

k
xξ  are normally distributed or uniformly 

distributed in (-1, +1) or assume only the values +1 and –1 with equal probability. They obtained in each case 

that  
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Samal [3] has considered the general case when the 
ν

k
xξ have identical distribution, with exception 

zero, variance and third absolute moment finite and non-zero. He has shown that Nn>snlogn outside an 

exceptional set whose measure tends to zero as n tends to infinity, where sn tends to zero, but sn log n tends to 

infinity. 

Samal and Mishra [4] have considered the case the 
ν

k
xξ  have a common characteristics function exp 

 αtC  where C is a positive constant and 1α  . They have shown that  
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 outside an exceptional set measure at most  
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In all the above cases the exceptional set depends upon n. Evans [1], was the first to obtain ‘strong 

result’ for these bounds. In such case the exceptional set is independent of the degree n of the polynomial. We 

use the term ‘strong result’ in the following sense: 

All the above results are of the form 

  1μ
N

P
n

n

r












as in tends to infinity  

 whereas the theorem of Evans is of the form 
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as n0 tends to infinity. 

 Evans [1] has shown, in case of normally distributed coefficients, that there exists an integer n0 such 

that for n>n0. 
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Samal and Mishra [5] have shown in the case of characteristic function exp  αtC  that for n>n0 
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where α>1. 

 

 

In [7], they have considered the ‘strong result’ in the general case. Assuming that the random variables (not 

necessarily identically distributed) have exception zero, variance and third absolute moment non-zero finite, 

they have shown that for n≥n0. 
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Our object is to improve the ‘strong result’ for lower bound in case of characteristic function exp 

 αtC . We have shown that for n>n0.  

Nn> nlog
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The result of Evans [1] is a special case of ours and is obtained by taking α=2 and 
1

n
)nlog(log  in our theorem 1. The result of Samal and Mishra [5] is also a special case of our theorem 

1. On the other hand our exceptional set is smaller.  

All authors who have estimated bounds for Nn have used one kind of basic technique originally used by 

Littlewood and Offord [2]. 

We shall denote μ  for positive constants which may have different values in different occurrences. 

We suppose always that n is large so that any inequalities true when n is large may be taken as satisfied.  

Throughout the paper, [x] will denote the greatest integer not exceeding x. 

It may be noted that although Evans [1] is a special case of ours, a much better estimate for the lower 

bound with smaller exceptional set can be derived from our theorem 1. For example, if we take α=2,  
p

n
)nlog(log   where 0<p<1, then for n>n0. 
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Lemma 1.2. 

 If a random variable ζ has characteristic function exp  αtC , then for every e>0 
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This lemma is due to Samal and Mishra [4]. 

 

Proof of the Theorem 

Take constant A and B such that 0<B<1 and A>1. Choose βm such that βm and 

m
βlog

mlog
  both tend to infinity as 

m tends to infinity. Let 

 .1
B

Ae
β2M,βmλ

α
n

α

nn

α/2

m

















    (1.1) 

So 
α

n2n

α
n1

βμMβμ    

 We define 

   
  xxlogx)X(   



Strong Result for Level Crossings of Random Polynomials 

DOI: 10.9790/3008-1103031218                                       www.iosrjournals.org                                       15 | Page 

Let k be the integer determined by 
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when n is large 
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 Now we estimate 
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Lemma 1.3. 
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 This follows directly from lemma 1.1. 

1.3. Now 
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 The last two steps above follow from (1.1) and (1.6). Hence by using lemmas 1.2 and 1.3, we have Rm 

< Vm for every sufficiently large n except for a set of measure at most 
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1.4. We define the events Em and Fm as follows: 

 Em={U2m>V2m, U2m+1<-V2m+1} 

 Fm={U2m<V2m, U2m+1>-V2m+1} 

We have shown earlier that  
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