Synthesis and Anti-Inflammatory Activity of Novel Quinazoline Derivatives based on Ethyl-4-Oxo-3H-Quinazoline-2-Carboxylatescaffold: Docking Studies

Jagadeesh Babu Vadlakonda¹, M. Srinivasa Murthy², M.Saritha³

¹Department of Pharmaceutical Chemistry, Pulla Reddy Institute of Pharmacy, Domadugu, Sanga Reddy, India. ²Department of Pharmaceutical Chemistry, Vignan Institute of Pharmaceutical Sciences, Deshmukhi, Hyderabad, India.

³Department of Chemistry, Malla Reddy Engineering College for Women, Dhulapally, Hyderabad.

Abstract:Novel derivatives of quinazoline linked oxazines throughamide linkage have been synthesized and evaluated for inhibition against inflammation. The synthesized compounds were characterized by ¹H NMR, ¹³C NMR FTIR and mass spectral data and tested for in-vivo anti-inflammatory activity using Carrageenan induced paw inflammatory model as well as docking studies were performed in order to elucidate structural insights for the anti-inflammatory activity. The investigation of anti-inflammatory activity screening and Docking results showed that the compound QOA-b exhibited good anti-inflammatory activity among all the synthesized compounds.

Keywords: Amide linkage, anti-inflammatory activity, docking studies,, oxazine, Quinazolinone, etc.

I. Introduction

Pro-Inflammation is a most common phenomenon that is linked to various diseases including cardiovascular diseases, cancer and various inflammatory disorders including rheumatoid arthritis, inflammatory bowel diseases, osteo-arthritis, psoriasis, endotoximia and there are several tissue factors that are known to be involved in the pathogenesis of inflammatory reactions such as histamins, bradykinin, inflammatory cytokines, interelukins-6(IL-6) and tumor necrosis alpha (TNF- α , secretory phospholipase A₂, cyclooxygenase and soyabean oxygenase. The inhibition of (TNF- α , inflammatory cytokines, over expression of cytokines and cyclooxygenase has been recognised as an attractive target for design and development of novel anti-inflammatory agents [1].

Many quinazoline linked heterocyclic derivatives are known to possess diverse pharmacological activities like anti-microbial and anti-inflammatory, anti-hypnotic [2], anti-fungal [3], antioxidant [4], anti-cancer [5,6] and anti-convulsant activity [7] and so. Hence quinazoline ester can be considered as useful tool to synthesize many novel compounds through amide linkage with amine containing thiazine derivatives. Forsynthesized compounds acute toxicity studies were Performed according to OECD guidelines. Determination of Anti-inflammatory activity was done by Carrageenan induced rat paw oedema model.

Molecular docking studies were performed by using GLIDE XP module of Schrodinger suite for the selected quinazoline derivatives which were screened for anti-inflammatory activity.

Materials and Methods

II.

1.1 Chemistry: All chemical were purchased from commercial sources. The melting points of all the compounds were determined by open capillary and are uncorrected/ unchanged. The purity test was done by TLC method. IR spectra were recorded in KBr on Shimadzu FT – IR 8300 spectrophotometer¹.H NMR spectra were recorded on Varian 400 MHz spectrometer using DMSO as solvent and tetra methyl silane as an internal standard. Mass spectra were recorded on Aglient 6430 Triple Quadruple LC-MS system.

1.2 Synthesis of Ethyl-4-oxo-3H-Quinazoline-2-carboxylate [8]:

A mixture of anthranilamide (50 g) and diethyl oxalate (100 ml) was refluxed in oil bath at 185-186°C for 4.5 hrs. The reaction mixture exhibited a yellowish green fluorescence. Excess of diethyl oxalate was removed by distillation under reduced pressure. The brownish residue was triturated with cold ethanol, filtered, dried and recrystallized from ethanol to give 30 gm (86.47%), mp.: 193-195°C, lit.189°C [9].

1.3 Synthesis of chalcones [I- III][9]:

Quantities of Anisaldehyde/3-Chlorobenzaldehyde/ 3-Nitro benzaldehyde (0.01mol) and acetophenone (0.01 mol) were dissolved in minimum amount of alcohol. Sodium hydroxide solution (0.02 mol) was added

slowly and the mixture stirred for 2hrs until the entire mixture becomes very cloud. Then the mixture was poured slowly into 400 ml of water with constant stirring and kept in refrigerator for 24 hours. The precipitate obtained was filtered, washed and recrystallized from ethanol. Finally, the compounds synthesized were, 3-(4-methoxyphenyl)-1phenylprop-2-en-1-one (I), 3-(3-chlorophenyl)-1-phenylprop-2-en-1-one (II), and 3(3-nitrophenyl)-1-phenylprop-2-en-1-one (III) respectively. The completion of the reaction was monitored by TLC.

1.4 Preparation of oxazine derivatives [I-III a, I-III b][10]:

A mixture of Chalcone I, II, III (0.02mol), urea (0.02mol) were dissolved in ethanolic sodium hydroxide (10ml) was stirred about 2-3 hours with a magnetic stirrer. This was then transferred into 400 ml of cold water with continuous stirring for an hour and then kept in refrigerator for 24 hours for further precipitation. The precipitate obtained was filtered, washed and recrystallized. The completion of the reaction was monitored by TLC.

1.5 Synthesis of quinazoline -4(3h)-ones linked oxazine Derivatives [11]:

Synthesis of Ethyl-4-oxo-3H-Quinazoline-2-carboxylate (0.01 mol) and corresponding amines containing Thiazine (0.01 mole) are taken in a round bottom flask then glacial acetic acid was added slowly while shaking. The mixture was heated under reflux for 4-6 hrs. After cooling, the contents were poured into crushed ice. The resulting solid was washed with distill water, filtered, dried in vaccum and recrytallized from warm ethanol.

1.6 N-(6-(4-(dimethylamino)phenyl)-4-phenyl-6H-1,3-oxazin-2-yl)-4-oxo-3,4-dihyroqunazoline-3carboxamide

(**QOA-a**):TLC solventsystem:n-Hexane:Ethyl acetate (3:2), Rf value: 0.68. IR (KBr, cm⁻¹): 1635(NH-CO-), 2349 (C-O-C str), 1487 (Ar C=C), 1355 (Ar-C-O), 1664 (NH-Quinazoline), 1590 (C=N), 3070 (N-H). ¹H-NMR (DMSO-d₆400 MHz, δ ppm): 6.84-7.84 (m, ¹⁴H, Ar-H), 4.32(d, CH), 7.9 (NH-Quinazolin and -NH-CO- amide linkage). ¹³C NMR: 162.4, 160.0, 150.8, 156.0, 147.5, 144.5, 140.3, 141.1, 132.4, 127.4, 126.6, 125.3, 126.3, 126.7, 116.6, 120.9, 111.9, 112.3, 40.3. Mass Spectrophotometry (m/z): 466.35 (M+1).

1.7 N-(6-(4-(hydroxy)phenyl)-4-phenyl-6H-1,3-oxazin-2-yl)-4-oxo-3,4-dihyroqunazoline-3-carboxamide

(**QOA-4**):TLC solvent system: n-Hexane:Ethyl acetate(3:2), Rf value: 0.79. IR(KBr,cm⁻¹): 1627(-NH-CO-), 2359(C-O-C str), 1487(Ar C=C), 1375(Ar-C-O), 1664(NH-Quinazoline), 1580(C=N),. ¹H NMR(DMSO-d₆400 MHz,δ ppm): 6.84-7.84(m,15H,Ar-H), 4.32(d,CH), 8.1(NH-Quinazoline and -NH-CO- amide linkage). ¹³CNMR: 167.4, 160.0, 161.8, 157.0, 154.8, 148.5, 145.1, 141.2, 141.0, 133.2, 128.4, 128.5, 127.2, 126.6, 126.7, 126.5, 120.1, 112.3, 112.3. MS(m/z):439.5(M+1).

1.8 Pharmacological activity:

1.8.1 Determination of Acute Toxicity (LD50): Method:

The acute toxicity of synthesized compounds was determined by using albino mice of either sex (20-30g), maintained under standard husbandry conditions. The animals were fasted overnight prior to the experiment and fixed dose (OECD guideline No.425) method of CPCSEA was adopted for toxicity studies [12]. Effective dose ED50[13]Therapeutic dose is taken as 1/5th of lethal dose.

1.8.2 Determination of Anti-inflammatory activity By Carrageenan induced rat paw oedema model[14, 15]:

Six groups of albino rats of either sex (each comprising of six animals) weighing between 160-200 gms were deprived of food and water for 18 hours prior to the experiment.

Treatment protocol was done as follows:

Group I : Control (5% tween 80)

- Group II : Standard drug (Diclofenac sodium 20 mg/kg. In distilled water p.o)
- Group III : QOA-a (100mg/kg p.o) 5% tween 80 suspension

Group IV : QOA-b (100mg/kg p.o) 5% tween 80 suspension

Group V : QOA-c (100mg/kg p.o) 5% tween 80 suspension

Group VI : QOA-d (100mg/kg p.o) 5% tween 80 suspension

Group VII : QOA-e (100mg/kg p.o) 5% tween 80 suspension

Group VIII : QOA-f (100mg/kg p.o) 5% tween 80 suspension

The standard diclofenac sodium and synthesized compounds under study i.e.QOA-a,QOA-b,QOA-c,QOA-d,QOA-e andQOA-f were administered orally to all rats. After 30 minutes 0.1 ml of 1% carrageenan suspension in normal saline was injected in to the sub plantar region of the hind paw of each rat. The oedema volumes of

the injected paws were measured at 1/2, 1st, 2nd and 4th hour. The difference between the paw volumes of treated animals were compared with that of the control group and the mean oedema volume was calculated. From the data obtained mean volume of oedema, and percentage reduction in oedema were calculated. Percentage reduction or inhibition in edema volume was calculated by using the formula. Percentage reduction in oedema volume was calculated by using the formula.

Percentage of edema inhibition=(Vo -V₁)/Vo * 100

Where, Vo=Volume of the paw of control at time 't' V_1 =Volume of the paw of drug treated at time 't'

1.9 Molecular docking:

Molecular docking studies by using GLIDE XP module of Schrodinger suite were performed for the selected quinazoline derivatives which were screened for in-vitro COX-2 inhibition. Initially, a digitalized structure of the protein COX-2 was retrieved from the protein data bank with PDB ID: 3NTI.Structure of the protein was processed by adding hydrogen to satisfy the valence and optimized by using OPLS-2005 force field (optimized potential for liquid simulations). Receptor grid generation was accomplished using Glide docking protocol and ligands were docked by employing XP mode of Glide. Best pose of each ligand was ranked according to the E-model energy. The docking score from Glide (Glide Score) is entirely based on Chem Score. It also include a steric – clash term, adds polar terms featured by Schrodinger to correct electrostatic mismatches.G score = $0.065 \times Van der Waals energy + 0.130 \times Coulomb energy + Lipophilic term (Hydrophobic interaction) +H bonding + Metal binding + Bury P (Penalty for buried polar groups) + Rot B (Penalty for freezing rotatable bond) +Site (Polar interactions in the active site) [16].$

III. Results and Discussion

In the present, ethyl-4-oxo-3H quinqzoline-2-carboxylate (3) was prepared by reaction between anthranilamide (1) and diethyl oxalate (2) heating at 180-186°C. Chalcones (6a-6f) were prepared by base catalysed claisen-schmidit condensation between different aldehyde and acetophenone further, compounds 6a-6af were treated with urea to give series of oxiazine derivatives (7a-7f) followed by interaction of these compounds 7(a-f) with ethyl-4-oxo-3H quinqzoline-2-carboxylate in the presence of acetic acid to give a series of qunazoline linked oxazine derivatives 8(a-f). Compound 3 was confirmed by melting point 193-194 °C, lit 189°C. Chalcone compounds 6(a-f) were confirmed by carbonyl peak around 167 cm⁻¹ and c=c stretching around 1487 cm⁻¹ in IR spectra. Further, oxazine compounds were7(a-f) confirmed by primary amine peak around 1612 cm⁻¹ and c-o-c stretching peak around 2359 in IR spectra and δ 2.3 as singlet, -CH proton of oxazine at δ 4.64 in HNMR. The final compounds quinazoline linked thiazine derivatives 8(a-f) were confirmed by (-NH-CO) -amide peak appear around at 1627cm-1 in proton NMR it was appeared at δ 8.01 as singlet. The quinazoline linked thiazine derivatives were confirmed by FTIR, HNMR, C¹³ NMR and mass spectral data.

Fig 1: General Structure of quinazoline linked oxazine derivatives	

 Table 1: Physical Characterization data of synthesized compounds:

 P
 P

 V
 Molecular

Product	R ₁	R ₂	Х	Molecular	Molecular	Solvent for	M.P	Yield
Code				Formula	weight	recrystallization	(⁰ C)	(%)
QOA-a	-N(CH ₃) ₂	Н	C ₆ H ₅	$C_{27}H_{23}N_5O_3$	465.36	Ethanol	209-210	73
QOA-b	-P-Cl	Н	C ₆ H ₅	C25H17N4O3Cl	456.08	Ethanol	210-212	61.2
QOA-c	-P-OH	Н	C ₆ H ₅	$C_{25}H_{18}N_4O_4$	438.5	Ethanol	229-230	69
QOA-d	-P-No ₂	Н	C ₆ H ₅	$C_{25}H_{17}N_5O_5$	467.0	Ethanol	231-233	71
QOA-e	-P-OCH ₃	Н	C ₆ H ₅	$C_{26}H_{20}N_4O_4$	452.5	Ethanol	216-218	69
QOA-f	Н	Н	C ₆ H ₅	$C_{25}H_{18}N_4O_3$	422	Ethanol	218-219	68

Fig 2:Synthesis of titled compounds 7 a-f

140		iontui 7 ii	iaryois Oi	. by minoi		inpounds	•		
Compound	Elemental Analysis(Calculated)								
code	% C	% H	% N	% O	% S	% Cl	% NO		
QOA-a	67.34	4.81	14.54	8.64	6.66	-	-		
QOA-b	63.49	3.62	11.85	6.77	6.77	7.50	-		
QOA-c	66.07	3.99	12.33	1056	7.05	-	-		
QOA-d	31.43	1.79	5.86	3.35	3.36	-	54.21		
QOA-e	66.65	4.30	11.96	1024	6.84	-	-		
OOA-f	66 48	4 4 1	12 78	7 30	7 31	-	-5		

 Table 2:Elemental Analysis Of Synthesized Compounds:

% O = Oxygen Percentage, % S= Sulphur Percentage, % Cl= chlorine Percentage,

% NO=Nitric oxide Percentage

Group	Treatment	Dose	Paw oedema volume							Paw oedema volume			
_		mg/kg	After 1/	/2 hr	After 1 st hr		After 2nd hr		After 4th hr				
			Mean	% ROV	Mean	% ROV	Mean	%ROV	Mean	%ROV			
1	Control	0.5ml	0.18	-	0.51	-	0.58	-	0.55	-			
2	Standard	20	0.100	45.42	0.14	67.72	0.114	80.02	0.012	96.94			
3	QOA-1	100	0.063	65.02	0.06	68.55	0.13	68.55	0.13	73.02			
4	QOA-2	100	0.11	23.30	0.32	40.85	0.42	50.20	0.40	56.74			
5	QOA-3	100	0.12	24.14	0.30	43.75	0.52	60.20	0.30	57.74			
6	QOA-4	100	0.16	38.00	0.15	56.33	0.22	62.71	0.20	65.57			
7	QOA-5	100	0.17	40.03	0.25	52.00	0.32	57.11	0.33	50.00			
8	QOA-6	100	0.20	23.00	0.33	33.71	0.35	40.06	0.26	43.42			

Table 3: Data Showing Anti-Inflammatory Activity of Quinazoline Linked oxazine Derivatives In Carrageenan
Induced Acute Rat Paw Oedema Model:

ROV- Reduction in paw oedema volume.

Molecular docking:

Molecular docking study was performed for further exploration of the mechanism of action of the synthesized compounds with cox-2 enzyme and to elucidate the observed biological results. Docking of of compound QOA-b showed two hydrogen bond interaction(one from Quinazoline ring -NH and other one from -NH-C=O amide linkage) and Tyr 355;d=1.81 A^o and 2.41 and quinazoline linked thiazine ring showed stacking interaction with ARG 120.Moreover, compound was surrounded by VAL 523, SER 353, GLY 524, LEU 352 and SER 471, which was very similar to that of the interaction exhibited by the know cox-2 inhibitors. In addition to this, QOA-b compound has dimethyl amino group which provided additional interaction with active site amino acid of cox-2 and this might be contributed to better activity than remaining copmpounds. Further, this is supported by results obtained fromin-vivoanti-inflammatoryacitivity.

The two dimentional and three dimentional represent of compound QOA-a were given below.

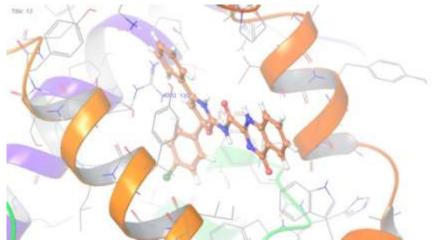


Fig 3: Three – dimensional structural model of compound QOA-b into COX-2

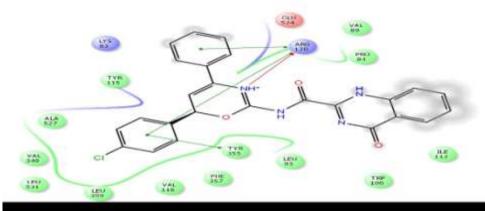


Fig 4:Two - dimensional representation of the interacting mode of QOA-b with COX-2

IV. Conclusion

The synthesized compounds were evaluated for in-vivoanti-inflammatory activity. Among the evaluated compounds QOA-bexhibited highest inherent anti-inflammatoryactivity due to electron withdrawingcharacter of chlorine on phenyl nucleus. In addition to this, QOA-b compound showed significant docking interaction with cox-2 active site. Based on these observation, ATA-a have proven the potential as valuable lead for anti-inflammatory activity and remaining compounds exhibited mild to moderate activity compared to the standard compound(Diclofenacsodium).

Acknowledgment

The authors wish to thank Dr.V. Rama Mohan Gupta, Principal, Pulla Reddy institute of Pharmacy for providing facilities to carry out the research work and also thankful to G. Deepak Reddy for providing docking study.

References

- Ibrahim Jantan and Syed Nasir Abbas Bukhari. Studies of synthetic chalcone derivatives as potential inhibitors of secretory phospholipase A₂, cyclooxygenas[es, lipoxygenase and pro-inflammatory cytokines, Drug Design, Development and Therapy, 8,2014,1405-1418.
- [2]. Omar abd el-FattahM and Emad M.M Kassem. Synthesis of some new quinazolin-4-one derivatives and evaluation of their antibacterial and anti-inflammatory effects, Acta Poloniae Pharmaceutical-Drug Research, Vol.65 (1), 2008, 11-20.
- [3]. P.R. Vijay Anand and K. Suresh Kumar. Synthesis of Quinazoline Derivatives and their biological activities. Asian journal of chemistry, 21(9), 2009,6656-6660.
- [4]. M.A. Al-Omar and adelS. El-Azab. Synthesis of some new 4-(3H)-quinazoline analogs as potential antioxidant agents, Saudi chem. Soc., 2006, 10, 113.
- [5]. Yarlagadda Rajesh Babu and Mantripragada Bhagavanraju. Design and synthesis of quinazoline tagged acridones as cytotoxic agents and their effects on EFGR tyrosine kinase: Acta Pharm.chem. Life Sci., 2014,347,624-634.
- [6]. Malleshappa N. Noolvi and Harn M. Patel. Synthesis and in vitro antitumor activity of substituted quinazoline and quinazoxaline derivatives: Search anti-canceractivity, European Journal of Medicinal chemistry. 2011, 46, 2327-2346.
- [7]. Debkiron Mukherjee and A. Mukho Padhyay., Synthesis, characterization and anticonvulsant activity of substituted 4-chloro-2-(4piperazin-1-yl) Quinazolines. International Journal of Pharmacy and Pharmaceutical sciences, vol.6, issue .5, 2014.
- [8]. AndrasVaradi and Peter Horvath. Synthesis and configurational assignment of 1,2-dihydroimidazo[5,1-b] qunazoline-3,9diones:novel NMDA receptor antagonist. Tetrahedron 68, 2012, 10365-10371.
- [9]. Sugiyama Y., Sasaki T., Nagato N,Acid-catalysed of ethyl-cyanoformate with aromatic amines in acid:Facil synthesis of Nsubstituted amidinoformic acid and ethyl 4-quinazolone-2-carboxylate J.Org.Chem, 1978,43,4485-4487.
- [10]. R. Kalirajan and S.U.Sivakumar. Synthesis and Biological evaluation of some heterocyclic derivatives of chalcones, International Journal of ChemTech Research, vol.1(1), 2009, 27-34.
- [11]. Ch.Rajveer and D, Kumaraswamy. Synthesis of some 6-bromo quinazolinone derivatives for their pharmacological activities, International Journal of Pharma and Bio sciences, vol.1 (3), 2010.
- [12]. Prema Verma Raghavan, Expertconsultant. CPCSEA, OECD Guidelines No.420.
- [13]. Paget GE, Barnes JM. Evaluation drug activities pharmacokinetics, Laurence D R, Bacharach A AcademicPress New Yark. 1983;1.
- [14]. Chatterjee S., Das S. N. Ind. J. of Pharmacology, 1996, 28,116-119.
- [15]. Pharmacopoeia of India, 1996, II, A-100, A-108.
- [16]. P. Chaitanya and G. Deepak Reddy. Design and Synthesis of Quinazoline Derivatives as anti-inflammatory agents: Pharmacophore Modeling and 3D QSAR stydies, Medicinal Chemistry, 2014,10,711-723.