Diversity Of Fruit And Seed Morphology In Shivan Malai Flora Of Eastern Ghats Of Salem District In Tamilnadu, India

Anitha. M¹. Prabakaran, R²., **Senthil Kumar, S¹.**, Gopinath, L. R³

¹ Department of Botany, Vivekanandha College of Arts and Sciences for Women, Namakkal, Tamilnadu, India. ² Department of Botany, Ramakrishna mission Vivekananda College (Autonomous) Chennai. ³ Department of Biotechnology, Vivekanandha Educational Institutions, Namakkal, Tamilnadu, India.

Abstract: Diversity of seeds based on their morphology across vegetation and seasons in Shivan Malai of Salem district, Tamilnadu India was studied in the present research. Fruit type and colour, seed number per fruit, length and breadth of seed, seed weight, seed sculpturing pattern, seed shape, seed colour, hilum, modification of seed / fruits were studied. The study resulted in 11 different types of fruits dominated with capsule and 22 different shapes of seeds dominated with ovate shape, 4 different coloured seeds (yellow, reddish black, pale yellow and greenish brown) dominated with black and brown coloured seeds, 12 different types of seed sculpturing pattern (chagrenate, Scabrate, Reticulate, Echinate, Regulate, Cicatricose, Corrugate, Baculate, Striate, Piliferous, Granular, Clavate) and 4 different hilum (terminal, sub terminal, lateral and basal). Seed shape is extremely variable since it depends on the form of the ovary, size, shape of the embryo and amount of endosperm present.Structural modification of Fruits and Seed showed winged, parachute mechanism, Hooked and Balloon fruit. Seed size and number are inversely related like many small seeds or a few large ones. This relationship is an important factor in reproduction and spatial distribution of a plant concerns along with seed weight. Helum is not only important in taxonomic classification it also determines the seed distribution through wind based on their direction at different season.

Keywords: Seed, fruit, Colour, shape, hilum, etc.

Date of Submission: 09-10-2017

Date of acceptance: 16-11-2017

·

I. Introduction

In gymnosperms and angiosperms of plant kingdom seed form an important phenomenon in development of reproduction and spread of them relative to more primitive plants such as ferns, mosses and liverworts, which do not have seeds and use other means to propagate (Reven *et al.*, 2013). Plant reproduction is the production of new individuals or offspring in plants accomplished through sexual and asexual means. Sexual reproduction produces offspring by the fusion of gametes, result in offspring genetically different from their parents, asexual reproduction produces new individuals without the fusion of gametes, genetically identical to the parent plants and each other except when mutation. In seed plants the offspring can be packaged in a protective seeds.

Natural vegetative reproduction is mostly a process found in herbaceous and woody perennials plants, and typically involves structural modifications of the stem or roots and in a few species leaves. However plants require seeds to reproduce so than they do not die off and become extinct. Seed are an energy efficient mechanism that is durable and doesn't cost the plant much in the way of resources to produce. Man requires seeds for food production. Either seeds of edible plants are collected and sown for food (such as vegetables and fruits) or the seed its self is used for food (such as rice, wheat corn etc.)

A seed is a fertilized or ripened ovule, protecting dormant embryo within and serve the function of preparation dispersal and reproduction of the parent plant. In angiosperms, the seeds are enclosed within fruits, whereas in gymnosperms seeds are exposed or naked. Seeds are enormously variable in shape, size, structure and period of viability. Seed coats help protect the embryo from injury and also from drying out. Seed coat can be thin and soft as in beans or think and hard as in locust or coconut seeds. Endosperm a temporary food supply is packed around the embryo in the form of special leaves called cotyledons or seed leaves these generally are the first parts visible when the seed germinates. Observation in many plant groups have shown that seed morphology and anatomic feature are rather conservation, which makes them taxonomically important. In addition to vegetative and reproduction characteristics the features of the seeds have long been employed as an important taxonomic feature examination are concerned with general shape and size rather than details or surface ornamentation. Most systematic agree that data concerning the macro and micro structure of seeds are very significant for the classification of angiosperms taxa.

Heywood (1971) drew attention to the importance and impact of scanning electron microscopy in this study of systematic problems as very valuable information has been provided by using this technique. Recently the application of SEM to the study of the seed coat has become widespread. Vaughan and Whitehouse (1971) studied macro and micro morphological characters of approximately 90 genera and 200 species of Brassicaceae and paid special attention to the relationships between structure and existing taxonomy.

Morphology of seed coat has been identified as important taxononomic character and also to trace their evolutionary pathway (Koul *et al.*, 2000; Zeng *et al.*, 2004; Moazzeni *et al.*, 2007; Pınar *et al.*, 2007; 2009; and Duran, 2009). The present investigations were carried out on the morphological characters of seed in the more species from shivan malai of southern Eastern Ghats. Morphology of seeds is an effective parameter in identification of species and their phylogentic relationships with other plants (Bona, 2013).

II. Methodology

In the present investigation fruit type and seed characteristics were studied at Shivan malai area, by collecting mature fruits and seeds from Vinayaka mission's 1008 Sivalayakailayam is located near Ariyanoor. It is about 21 km west of Salem city. It is situated between 78°3" lat E and 11°80" lat N. The region falls dry under tropical monsoon climate receiving both south west monsoon and north East retreating monsoon. The vegetation is tropical dry deciduous thorny forest. The maximum temperature is range from 26.4°c to 35.3°c and minimum temperature range from 21.0°c to 20.4°c. The average rainfall of the area is 65.51mm and the relative humidity of the area fluctuates from 74 to 85%. The soil is red and poor in nitrogen content plant nutrient, low to medium to high in potassium. The moisture holding capacity is poor.

Fruits such as Capsule, Pod, Mericarps, Utricle, Follicle, Caryopsis, Berry, Drupe, Achene, Samara, Nutlets were recorded in the study area. 3-5 individuals plants per species were chosen randomly and at least 5 fruit per plant were counted for their seeds and the average number of seeds per fruit was calculated. However in few cases less number of fruits was examined. 25 or 100 seeds were weighed separately and the average weight of the seeds per fruit was calculated (10 seeds in case or less material). Length and breadth of seeds (seed size) was measured, under the dissection microscope. The average length and breadth in mm was calculated.

The sculpturing pattern was studied by an Olympus photomicrograph at the Department of Botany VICAS. The surface was studied by directly transferring the seeds to a slide. Shapes of the seeds were analyzed such as chagrenate, psilate, clavate, reticulate, scubrate, echinate, corrugate, verrucate, regulate, faveolate, gemmate, straite, fossutate, baculate, cicatricose, canaliculate. Seed surface, colouring pattern, size, shape of hilum and modification of fruits and seeds were recorded.

III. Result and Discussion

The present study at Shivan malai showed vegetation 160 species belonging to 51 families in which 90 species seeds were collected in different seasons which belong to 75 genera and 31 families. Habit wise analysis showed the vegetation is dominated by herb followed by shrub and tree species. Fabaceae, Euphorbiaceae, Malvaceae, Amaranthaceae, (27 Species) dominate in total number of species. Wereas Capparidaceae, Lythraceae, Rhamnaceae, Sterculiaceae, Zygophyllaceae, Passifloraceae, Rubiaceae, Sapotaceae, Onagraceae, Ulmaceae, Bixaceae, Menispermaceae, Cucurbitaceae, Graminae, Geraniaceae, least in the total number of species (Table 1).

Apart from taxonomic classification fruit and seed morphology and modifications also ensure effective disposal depending upon their habitat, agroecologial conditions, their nature of sexual reproduction, etc. Morphological characters are important in consumer choice among the available taxa which determine their success in their dispersal (Gautier-Hion et al., 1985). Variety of characters of fruits is co-adopted with preference of their dispersal agent as food and cosmetics (Morden-Moore and Willson 1982; Moermond and Denslow, 1983; Sorenson, 1983; Hladik 1981; Milton 1981; Thompson 1981). In the present study 11 different characters were recorded in which capsule and pod characterized fruits are dominant (Table 2). However, most of the fruits drupes with dry flesh were identified as dehiscent pods orapsules (Knight and Siegfried, 1983). Fruit medications is one another process through which plant species attract the consumers for the disposal of their seeds these modifications occur in their cell wall fruit content and its associated smell (Goulao and Oliveira, 2008). However, there are other physical modifications also occur in fruit of plant species such as forming balloon as in Cardiospermum helicacabum L., surface spines as in Datura metal L. and D. discolor and wings as in Holoptela integrifolia, pl. and Dodonae viscose, L. These physical features support in disposal of seeds through wind and physical hanging. And also protect the seed from consuming. Each plant ensures their unique disposal mode which is adapted based on their size, growth pattern, environmental conditions in which they establish (Venable and Brown, 1993; Willson, 1992; Willson et al., 1990; Hughes et al., 1994). The present study recorded hook in Martynia annua L., wings in Tribulus terrstria L., Tabebuia rosea, (Bertol.) DC., Xanthium indicum, Roxb. and Albizzia odoratissima.Benth.and Parachute structure in Wrightia tinctoria, (

Roxb)., Calotropis gigantean, R. Br., Calotropis procera, R. Br., Nerium odorum, sol. and Tridax procumbens, L.

Seed is an important genetic material between successive generations of plant and dispersal (Armstrong, 1999). Seed posses' important characters that is used for identify the plant species at different levels (Corner, 1976; Ahmed and Qaiser, 1989; Omer and Qaiser, 1995; Abid and Qaiser, 2009; Ather et al., 2010; Kanwal et al., 2010). Among the seed characteristics hilum is an important character that determine the period of seed detachment and dispersal in the present study 43 species showed terminal, 1 species sub terminal, 17 species lateral, 9 species basal and 20 species undistinguished positions. Seed weight is also an important parameter which not only taken for classification but also for their dispersal but not many of them studied (Gautier-Hion et al., 1985). For species which grow in more stable environments with closed vegetation wide dispersal may be of less importance than the ability to establish seedlings in a highly competitive environment. In these species priority is given to seed size rather than number Salisbury (1942). Seed size has been shown to be correlated with a number of environmental factors. The larger seeds are associated with drier habitats Baker (1972). Present research showed that heavy seeds are represented in shrubs from 0.001 to 1g weight followed by climber which ranged from 0.01 to 9.6mg, herbs ranged from 0.001 to 7.1mg, and trees from 0.002 to 2.2mg weight. Among the 31 family large seeds are represented by Pedaliaceae with 2 species, which ranged from 0.1mg to 1g followed by Acanthaceae with 6 species which ranged from 0.001mg to 10.6mg, Convolvulaceae with 2 species ranged from 0.7 to 9.6mg, Malvaceae with 5 species ranged from 0.003 to 7.1mg, Lamiaceae with 5 species ranged from 0.4 to 5.1mg and Fabaceae with 11 species ranged from 0.005 to 2.2mg (Table 3). Sculpturing pattern is useful in identification of plants at species levels (Koul et al., 2000) and also even at landraces level (Gopinath, 2004). The present study showed 11 different sculpturing pattern (Chagrenate, Scabrate, Reticulate, Echinate, Regulate, Cicatricose, Corrugate, Baculate, Striate, Piliferous, Granular exine and Clavate) domidated by Chagrenate in 28 taxa followed by Scabraate in 11 taxa and Reticulate in 11 taxa (Table 4). Small seeds are characteristics of species which have persistent dormant seed banks in the soil (Thompson and Grime, 1979). A reduction in seed size has also been shown to be associated with predator avoidance Janzen (1969). Seed shape extremely variable such as ovate, spherical, oblong, rhomboid, obtriangular, semi-angular, heart shape, cuneate, bean, kidney shape, reniform, snail shape, linear, ellipsoid, sub globose, deltoid, cordate, 5 winged among these ovate (28), rhomboid (11), spherical (10) shape recorded in most of species. Shape seeds are extremely variable it depends on the form of the ovary, the condition under which the parent plant is growing during the seed formation. The other factors which determine the size and shape are the size of the embryo, the amount of endosperm present and to what extent other tissue participates in the seed structure. Seed surface colour range black, brownish black, yellow, greenish brown, reddish black, reddish brown, pale yellow, brown, dark brown and black with white. In the study black to brown colour recorded in most of species, whereas reddish black, vellow recoded with least number of species.

IV. Conclusion

Shivan malai of Salem district in Tamilnadu, India showed high diversity of vegetation falling in Eastern Ghats with 160 species belonging to 51 families. Seeds of 90 species are representing 75 genera in 31 families showed high diversity of both fruit and seed characteristics depicting their significance in taxonomic identification at species level and also at landraces level. However, overall vegetation is dominated by fabaceae, capsule fruit type with three different fruit and seed modifications. Position of the vegetation is dominated with terminal position, seed weight is higher in shrubs and climbers and dominated with Chagrenate sculpturing pattern.

Acknowledgement

We thank our Chairman Dr. M. Karunanithi, Vivekanandha Educational Institutions, Tiruchengode, Namakkal for providing library, infrastructure and lab facilities for doing our work.

References

- [1]. Abid, R. and M. Qaiser. 2009. Taxonomic significance of the cypsela morphology in the tribe Anthemideae (Asteraceae) from Pakistan and Kashmir. *Pak. J. Bot.*, 41(2): 555-579.
- [2]. Ahmed, R. and M. Qaiser. 1989. Seed morphological studies of some common plant of Karachi. Pak. J. Bot., 21(2): 218-246.
- [3]. Armstrong, W.P. 1999. Blowing in wind seeds and fruits dispersal by wind Website version 2, March. 2012 http://waynesword.palomar.edu.
- [4]. Ather, A., R. Abid and M. Qaiser. 2010. The Seed Atlas of Pakistan-IV.Oxalidaceae. *Pak. J. Bot.*, 42(3): 1429-1433.
- [5]. Baker, H. G. 1972. Seed weight in relation to environmental conditions in alifornia. Ecology 53, 997-1010.
- [6]. Bona, M. 2013. Seed-coat microsculpturing of Turkish *Lepidium* (Brassicaceae) and its systematic application, Turk J Bot 37: 662-668
- [7]. Corner, E.J.H. 1976. The Seeds of Dicotyledons Vol: 1. Cambridge University Press, Britain.
- [8]. Gautier-Hion, A., MpDuplantier, J., Quris, R., Feer, F., Sourd, C., Decoux, J. P., Dubost, G., Emmons, L., Erard, C., Hecketsweiler, H., Moungazi, A., Roussilhon, C. and Tliiollay, J. M. 1985. Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia (Berlin) 65: 324-337.

- [9]. Gopinath, L. R., Israel Oliver King, E. D, Sengottuvel D. 2004. A Value Added Marketing Chain Approach for Agro biodiversity Conservation. Proceedings of the National Workshop on Biodiversity Resources Management and Sustainable Use. Centre for Biodiversity and Forest Studies, Madurai Kamaraj University, Madurai.
- [10]. Goulao, L. F. and Oliveira, C. M. 2008. Cell wall modifications during fruit ripening: when a fruit is not the fruit. Trends in Food Science & Technology 19 4-25.
- [11]. Heywood, V. H. 1971. The characteristics of the scanning electron microscopes and their importance in biological studies. In: Heywood VH, ed. Scanning electron microscopy: systematic and evolutionary applications, Vol. 4. London: The Systematic Association.
- [12]. Hladik, C. M. 1981. Diet and the evolution of feeding strategies among forest primates. In: Harding RSO, Teleki G (eds). Omnivorous Primates : gathering and hunting in human evolution. Columbia Univ Press, New York, pp 215-254.
- [13]. Hughes, L., Dunlop, M., French, K. Leishman, M. R., Rice, B., Rodgerson, L. and Westoby, M. 1994. ESSAY REVIEW Predictingd ispersals pectra: a minimal set of hypotheses based on planta ttribut Journal of Ecology, 82, 933-950.
- [14]. Jansen, D. H. 1969. Seed-eaters vs. seed size, number, toxicity and dispersal. *Evolution* 23:1–27.
- [15]. Kanwal, D., R. Abid and M. Qaiser. 2010. The Seed Atlas of Pakistan-III.Cuscutaceae. Pak. J. Bot., 41(4): 703-709.
- [16]. Knight, R. S. and Siegfried, W. R. 1983. Inter-relationships between type, size and colour of fruits and dispersal in Southern African trees. Oecologia 56: 405-412.
- [17]. Koul, K. K., Nagpal, R. and Raina, S. N. 2000. Seed coat microsculpturing in *Brassica* and allied genera (subtribes *Brassicinae*, *Raphaninae*, *Moricandiinae*). Ann Bot 86: 385-97.
- [18]. Milton, K. 1981. Food choice and digestive strategies of two sympatric primate species. Am Nat 117: 496-505
- [19]. Moazzeni, H., Zarre, S., Al-Shehbaz, I. A. and Mummenhoff, K. 2007. Seed-coat microsculpturing and its systematic application in *Isatis* (Brassicaceae) and allied genera in Iran. *Flora* 202: 447-454.
- [20]. Moermond, T. C. and Denslow, J. S. 1983. Fruit choice in neotropical birds: effects of fruit type and accessibility on selectivity. J An1 Ecol 52 : 407-420.
- [21]. Morden-Moore, A. L. and Willson, M. F. 1982. On the ecological significance of fruit colour in *Prunus* and *Rubus*: field experiments. Can J Bot 60:1554-1560.
- [22]. Omer, S. and Qaiser. M.1995. Seed morphological studies in the genus *Gentiana* L. (S.I.) Gentianaceae from Pakistan and Kashmir. *Tr. J. Botany*, 19: 581-593.
- [23]. PINAR, N. M., Adıguzel, N. and Geven, F. 2007. Seed coat macrosculpturing in some Turkish Aethionema R. Br. (Brassicaceae). Pak J Bot 39: 1025-1036.
- [24]. Pinar, N. M., Duran, A., Ceter, T. and Tug, G. N. 2009. Pollen and seed morphology of the genus *Hesperis* L. (Brassicaceae) in Turkey. *Turk J Bot* 33: 83-96.
- [25]. Raven, P. H., Eichhorn, S. E. Evert, R. F. 2013. Biology of Plants. 8th Ed. New York: W.H. Freeman and Co.
- [26]. Salisbury, E. J. 1942. The Reproductive Capacity of Plants. G. Bell and Sons Ltd, London.
- [27]. Sorensen, A. E. 1983. Taste aversion and frugivore preference. Oecologia 56:117-120
- [28]. Thompson, J. N. 1981. Elaiosomes and fleshy fruits: phenology and selection pressures for ant-disperserd seeds. Am Nat 117:104-108
- [29]. Thompson, K. and Grime, J. P. 1979. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. *Journal* of Ecology 67, 893–921.
- [30]. Vaughan, J. H. and Whitehouse, J. M. 1971. Seed structure and the taxonomy of the Cruciferae. Botanical Journal of the Linnean Society 64: 383-409.
- [31]. Venable, D.L. and Brown, J.S. 1993. The population-dynamicf unctions of seed dispersal. V egetatio, 107/108, 31-55.
- [32]. Willson, M. F. 1992. The ecology of seed dispersal. Seeds: the ecology of Regeneration in Plant Communities (e d. M. Fenner), pp. 61-85. C.A.B. International, Wall-ingfor.
- [33]. Willson, M. F., Rice, B. L. and Westoby, M. 1990. Seed dispersal spectra: a comparison of temperate plant communities. Journal of Vegetation Science, 1, 547-562.
- [34]. Zeng, C. H. L., Wang, J. B., Liu, A. H. and Wu, X. M. 2000. Seed coat microsculpturing changes during seed development in diploid and amphidiploid *Brassica* species. Ann Bot 93: 555-566.

S. NO	BINOMIAL	VERNACULAR NAME	FAMILY	HABIT
1.	Abrus precatorius, L.	Gundumani	Fabaceae	Climber
2.	Abuluda mutica, L.	-	Poaceae	-
3.	Abutilon indicum, G. Don.	Thuthi	Malvaceae	Herb
4.	Acacia leucophloea, willd.	Velvel (or)velvelam	Fabaceae	Tree
5.	Acalypha indica, L.	Kuppaimeni	Euphorbiaceae	Herb
6.	Achyranthes aspera, L.	Nayurivi	Amaranthaceae	Herb
7.	Aegle marmelos, Corr.	Villuvam	Rutaceae	Tree
8.	Aerva lanata, Juss.	Poolampoo	Amaranthaceae	Shrub
9.	Ailanthus excels Roxb.	Perunaram	Simarubaceae	Tree
10.	Albizzia amara, Boivin.	Arapumaram	Mimosaceae	Tree
11.	Albizzia lebbeck, Benth.	Vagai	Mimosaceae	Tree
12.	Albizzia odoralissima, Benth.	Porasamaram	Mimosaceae	Tree
13.	Alternanthera pungens, kunth.	Odramul	Amaranthaceae	Herb
14.	Alternanther atriandra Lamk.	Ponnangannikerrai	Amaranthaceae	Shrub
15.	Alysicarpus monilifer DC.	Sithirabarani	Fabaceae	Prostrate herb
16.	Amarantus viridis L.	Kuppaikkeerai	Amaranthaceae	Herb
17.	Andrographis echioides Nees.	Goburamthangi	Acanthaceae	Herb
18.	Andrographis paniculate,L	Nelavempu	Acanthaceae	Shrub
19.	Anisochilus carnosus Wall.	Sethubunsedi	Lamiaceae	Herb
20.	Annona squamosa L.	Sitapalam	Annonaceae	Tree
21.	Aristolochia indica L.	Eesvaramoole	Aristalochiaceae	Twiner

 Table : 1 List of plants recorded in the study area

22	Azadinachta indiaa Jusa	Vanamaram	Maliagana	Troo
22.	Azuairachia inaica, Juss.	vepamaram	Wiellaceae	Titte
23.	Bambusa arundinaceae Willd.	Mungil	Poaceae	Tree
24.	Barleriabuxifolia, L.	Kattimullu	Acanthaceae	Shrub
25.	Bauhinia racemosa Lam.	Arikka	Fabaceae	Tree
26.	Bianhutur accentituum DC	Valiauminai	Ovalidaaaaa	Hoch
20.	Biophylum sensilivum, DC.	vensurunigi	Oxalidaceae	пего
27	Blepharis maderaspatensis,	Naathiranoondu	Aconthecese	Uarb
27.	Roth.	Naeumapoondu	Acanthaceae	пето
28	Boarhamia diffusa I	Mukarattekirai	Nyctaginaceae	Harb
20.	Boernaavia aijjusa L.	Iviukarattekirat	Nyctaginaceae	Helb
29.	Boerhaavia erecta, L.	Puinnarkava	Nyctaginaceae	Herb
30.	Borassus flabellifer L.	Panai	Palmaceae	Tree
31	Calotropis gigantea R Br	Frukku	Asclenidaceae	Shruhe
	Calue DD	Liukku	Aselepidaeeae	Shirube
32.	Calotropis procera R.Br.	Vel erukku	Asciepiadaceae	Shrub
33.	Cardiospermum helicacabum L.	Mudakkathan	Sapidaceae	Climber
34	Cassia auriculata L	Aavarampoo	Leguminosae	Tree
25	Cassia anni dantalia I	Deveryeivei	Cassalminaasaa	Hoch
55.	Cassia occidentatis L.	Payavervai	Caesaipillaceae	пего
36.	Cassia spectabilis, L.	Manjalkonrai	Caesalpinaceae	Small tree
37.	Catharanthus rosus (L). Don.	Nethivakalvani	Apocynaceae	Herb
38	Chloris barbata SW		Poaceae	Grass
30.	Chions barbaia SW.	-	Toaceae	GLASS
39.	Cissus quadrangularis L.	Pirandai	Vitaceae	Shrub
40.	Cissus xavierensis L.	Oolaiperandai	Vitaceae	Climber
41	Citrullus colocynthis schrad	Curumathankai	Cucurbitaceae	P herh
41.			Cucuronaceae	1.11010
42.	Cleome viscosaL.	Naivalai	Capparidaceae	Herb
43.	Clitoria ternatea L.	Sangupoosedi	Fabaceae	Climber
44	Coccinia indica W & A	Kovaikai	Cucurbitaceae	Climer
45	Coopulus hinsutes Di-1-	V atta-1	Maniana	Climiter
45.	Coccutus nirsutus, Diels.	Kattukodi	menispermaceae	Climber
46.	Coccus nucifera L.	Tenga	Palmaceae	Tree
47	Commelina henghalensis L	Adutinnathalai	Commelinaceae	Herb
49	Commintenant verifications E.	Maalla: laana i	Deserves	Ture
48.	Commiphora berri, Engle.	Mulkiluvai	Burseraceae	Iree
49.	Commiphora caudate, Engle.	Kiluvai	Burseraceae	Tree
50	Corollocarnus enigaeus, Hk f.	Aakasakarutan	Cucurbitaceae	Climber
51	Custalania commessa al	Izabulzabumai	Eabaaaaa	Hark
51.	Crotataria verrucosaL.	Kelukelupai	Fabaceae	пего
52.	Croton sparsiflorus, Morong.	Railpoondu	Euphorbiaceae	Herb
53.	Cynodon dactyon . Pers.	Arugampullu	Poaceae	Herb
54	Company compression I	Kunnagorai	Pongong	Horb
54.	Cypreus compressus L.	Kuillagotai	Foaceae	пето
55.	Datura discolor L.	Karuoomathai	Solanaceae	Herb
56.	Datura metel L.	Oomathai	Solanaceae	Herb
57	Delonix elata Gamble	Vadanarayanan	Caesalpiniaceae	Tree
57.		v adamara yanan	L	
58.	Denarophthoe falcate Ettingsh	-	Loranthaceae	parasitic
50	Dichroslachys cinerea,	V 7 - 1 - 4 1	Minner	T
39.	L.Wight&Arn.	vedamarai	Williosaceae	Tree
	Diagnuras abanum			
60.	Diospyros ebenum,	Tumbi	Ebnaceae	Herb
	J.koneingex.sprengle.			
61.	Dodonaea viscosa, L.	-	Sapindaceae	Small tree
62	Eclipta alba Hassk	Karisilakanni	Compositaceae	Annual herh
62.		Karisnakanni	Compositaceae	
63.	Eleusine aegyptiaca, Dest.	-	Poaceae	Herb
64.	Emblica officinalis, Gaertn.	Periyanellikai	Euphorbiaceae	Tree
65	Eremopogan foueolatus L		Poaceae	Herb
	Eremopogent joucotenus Er		Touccue	mino
66.	D II' O II D 1	-	Asteraceae	Shrub
	R.King&H.Robinson.			
67.	Euphorbia cyathophora, murray.	Kattupapale	Euphorbiaceae	Herb
68	Euphorbia heterophylla I	Palsedi	Euphorbiaceae	
20	Eunhophia kinta Line	Ammonnaal	Euphorbic	IIanh
09.	Eupnoroia nirta, Linn.	Annanpacnaruse	Eupnorbiaceae	Herb
70.	Euphorbia tirucalli L.	Tirucalli	Euphorbiaceae	Small tree
71	Evolvalus alsinoides L	Visnukarandi	Euphorbiaceae	Perennial herb
70	Figue hongelongie I	Aalamaram	Moreages	Troo
12.	ricus bengaiensis, L.	Aaiainaram	woraceae	Tree
73.	Ficus religiosa, L.	Arasamaram	Moraceae	Tree
- 4	Fimbristylis falcate (Vahl)	· ·		
74.	Kumth	Korai	Cyperaceae	Herb
75	Elacountia colonia D. 1	V 11 1	Floorentie	T
/5.	<i>г iacourtia spiaria</i> Koxb.	Karaikai	Flacourtlaceae	Tree
76.	Fleusine aegyliace	-	Poaceae	Herb
77	Flueggea leucopyrus willd	Pulaa	Euphorbiaceae	Shruh
70	Curoling agistics I	- uluu	Amonometh	Climber
/8.	Ginetina astatica L.	-	Amaranthaceae	Climber
70	Gymnena sylvestre	Shimilarmian	Aalaniadaaaaa	Climbon
/9.	.R.Br.exRoemeo&schuttes.	Shirukurunjan	Acteptadaceae	Chinder
00	Helotronium zaulanieum (I aml-)		Boranginessas	Uarh
<u> </u>	The our option zeylanicum (Lamk)	-	Doranginaceae	
81.	Hemides musindicus, R.Br.	Nannari	Aslepidaceae	Twinning shrub
82.	Holoptelea integrifolia, planch.	Ayamaram	Ulmaceae	Tree
	Hypanthus enneaspermus (I)			
83.	E mar 11	Orithalthambarai	Violaceae	Herb
L	F.muell.			
84.	Hyptis suaveolens, L.poit.	Gangathulasi	Lamiaceae	Herb
85	Inchnocarnus frutescens I	Udargodi	Anocynaceae	Shrub
0.5.	inclinoculpus francicellis, L.	Juargoui	1 ipoc ynaceae	Sinuo

			1	
86.	Indicofera aspelathoides, Vahl.	Sivanarvambu	Fabaceae	Herb
87.	Indicofera astragalina Dc.	-	Fabaceae	Herb
88.	Indicofera tinctoria L.	karuneele	Fabaceae	Herb
89.	Ipomoea biloba L.		Convolulaceae	Climber
90.	Jasminum auriculatum, Vahl.	Udigai	Oleaceae	Shrub
91.	Jatropha curcas L.	Kattamanuku	Euphorbiaceae	Tree
92.	Jatropha glandulifera Roxb.	Aathalai	Euphorbiaceae	Shrub
93	Jatropha gossynifolia I	Kattamanakku	Euphorbiaceae	Shrub
75.	Justicia micrantha	Kattainanakku	Lupiloiblaceae	Silluo
94.	Wallichay C P Clarka	-	Acanthaceae	Herb
05			A1	TT 1
95.	Justicia simplex D.Don.	Odivuatake	Acanthaceae	Herb
96.	Justicia tranquebarensis L.f.	Ponnakupoondu	Acanthaceae	Herb
97.	Lantana camara L.	Unnisedi	Verbenaceae	Shrub
98.	Lawsonia innermis L.	maruthani	Lythraceae	
99.	Leucas aspera wils Link.	Thumbai	Lamiaceae	Herb
100.	Lippia nodiflora (L)A,Rich.	Poduthalai	Verbenaceae	Prostrate herb
101.	Ludwigia sps.	Sevangasedi	Onagraceae	Herb
102	Mangifera indica L	Maamaram	Anacardiaceae	Tree
102.	Martynia annua I	Thelkodukukai	Pediaceae	Herb
103.	Malathria madanana atawa Coon	Musumusulusi	Cucurchiteceae	Climbon
104.	Meloinria maaeraspalana Cogli.	Musumusukai	Cucurbitaceae	
105.	Merremia tridenta Hallier I.	Muthiyarkoondal	Convolulaceae	Prostrate nerb
106.	Mimusops elengi,L.	makelam	Sapotaceae	Tree
107.	Mollugo cerviana Ser.	Verrichatarasi	Molluginaceae	Herb
108.	Mollugo nudicalis, Lam.	Parpadagam	Molluginaceae	Herb
109.	Mollugo pentaphylla L.	-	Molluginaceae	Herb
110.	Morinda tinctoria, Roxb.	Nuna	Rubiaceae	Tree
111.	Nerium indicum L.	Arali	Apocynaceae	Shrub
112	Nerium odorum Sol	Arali	Apocynaceae	Shrub
112.	Ocimum basilicum	Thirupetrupachilai	Lamiaceae	Sub shrub
113.	Octimum odstiticum	Naithulaai	Lamiaceae	Juorh
114.	Ocimum canum (Sims)	INatthulasi	Lamiaceae	Herb
115.	Ocimum sanctum L.	Thulasi	Lamiaceae	Herb
116.	Parthenium hysterophorous L.	-	Asteraceae	Herb
117.	Passiflora foetida L.	Poonaibalam	Passifloraceae	Climber
118.	Pavoni aodorata, Willd.	Peramutti	Malvaceae	Herb
119.	Pavonia zeylanica, Cav.	Sidhamutti	Malvaceae	Herb
120.	Pedalium murex. L.	Aanaineruchil	Pedaliaceae	Herb
121	Peltophorum pterocarpum Dc	Eavalvagai	Caesalpiniaceae	Tree
122	Pergularia extensa N F Br	Veleparuthi	Asclepidaceae	Climber
122.	Phyllanthus amanus I	Koolonolli	Furtherbiaceae	Horb
123.	Phyllandhus Langer W	Keelallelli	Euphorbiaceae	Heit
124.	Phyllanthus leucopyrus, w	venpoola	Euphorbiaceae	Herb
125.	Phyllanthus maderaspatensis L.	Maylanelli	Euphorbiaceae	Herb
126.	Phyllanthus niruri, L.	Keelanelli	Euphorbiaceae	Herb
127.	Physalis minima L.	Sodakuthakale	Solanaceae	Herb
128.	Polygala arvensis, Willd.	-	Polygalaceae	
129.	Polygala erioptera, Dc.	-	Polygalaceae	Herb
130.	Pongamia glabra Vent.	pongamaram	Fabaceae	Tree
	Portulaca wightiana	1 . 2		
131.	wallich.ex.wight& Am	-	Portulaceae	Herb
132	Prosonis cineraris I	Vannimaram	Mimosaceae	Tree
132.	Prosopis citeraris, E	Vivosouomorom	Mimosaceae	Tree
133.	Protologa telegana D. 1	vivasayamaram	Dominiosaceae	D LL-1
134.	Fronuoca indarosa, KOXD.	-	Portulacaceae	r.nerb
135.	Psidium guajava L.	Котуа	Myrtaceae	Tree
136.	Randia dumentoram, Lam.	Kaarimul	Rubiaceae	Shrub
137.	Randia malabaricum ,Lam.	Kaarai	Rubiaceae	Shrub
138.	Ricinus communis, L.	Aamanaku	Euphorbiaceae	Shrub
139.	Ruellia patula, Jacq.	-	Acanthaceae	Herb
140.	Ruellia tuberose.L.	Kirainthinayagam	Acanthaceae	Herb
141	Santalum album, L	Santhanamaram	Santalaceae	Tree
	Sarcostemma intermedium	Summinum	Summercue	1100
142.	Dene	Kodicalli	Asclepidaceae	Climber
1.42	Sida aardifalia I	Niletuthi	Malwaaaaa	Ucah
145.	Sua coratjona ,L.	Inilatutni	Maivaceae	Herb
144.	Sida rhombifolia L.	Aathibala	Malvaceae	Herb
145.	Stachytarpheta indica Vahl.	seemainaiuruvi	Verbenaceae	Herb
146.	Tabebuia rosea (Bertol.)DC.	-	Bignoniaceae	Tree
147.	Tamarindus indica L.	Puliyamaram	caesalpiniaceae	Tree
148.	Tecoma stans (L.)Kunth.	Sornapatty	Bignoniaceae	Tree
149.	Tecotona grandis L.f.	Thekku	Verbenaceae	Tree
150	Tephrosia purpurea I	Kaatukolingii	Fahaceae	Sub shrub
150.	Tinospora cordifolia Miers	Seenthilkodi	Menispermaceae	Climber
151.	Tribulus tarrastis I	Scentilikoui	Zygophyllacoac	Harb
152.	Tributus terrestis L.	- 12:	Zygopnynaceae	
153.	1 riaax procumbens L.	Kinetturupasan	Asteraceae	Herb

DOI: 10.9790/3008-12060193100

www.iosrjournals.org

154.	Vitex negundoL.	vennochchi	Verbenaceae	Tree
155.	Waltheria indica L.	Sengalipoondu	Sterculiaceae	Sub shrub
156.	Wattakaka volubilis, L.	Kodippalai	Asclepidaceae	Herb
157.	Wrightia tinctoria R.Br.	vetpalai	Apocynaceae	Tree
158.	Xanthium indicum, Roxb.	-	Asteraceae	
159.	Ziziphuso enoplia, Mill.	Nareelanthai	Rhamnaceae	Tree
160.	Zizuphus trinervia Roxb.	Sooraimul	Rhamnaceae	Tree

S. No.	FRUIT TYPE	No. of TAXA
1.	Capsule	25
2.	Pod	20
3.	Drupe	9
4.	Mericarps	7
5.	Utricle	5
6.	Follicle	4
7.	Caryopsis	1
8.	Berry	2
9.	Achene	6
10.	Samara	1
11.	Nutlets	4
Total		84

Table: 3 Average seed weight of species based on families.

S. No.	FAMILY	No. OF. SPECIES	WEIGHT	
1.	Fabaceae	11	0.005mg - 2.2mg	
2.	Euphorbiaceae	6	0.008 mg - 0.6 mg	
3.	Asteraceae	4	0.0003 mg - 0.6	
4.	Aizoaceae	2	0.3mg – 0.6mg	
5.	Rubiaceae	1	0.03mg	
6.	Apocynaceae	2	0.002 mg - 0.006 mg	
7.	Passifloraceae	1	0.009mg	
8.	Mimosaceae	2	0.03 mg - 0.1 mg	
9.	Moraceae	2	0.1 mg - 0.3 mg	
10.	Convolvulaceae	2	0.7mg – 9.6mg	
11.	Bixaceae	1	0.06mg	
12.	Amaranthaceae	5	0.001 mg - 0.14 mg	
13.	Malvaceae	5	0.003mg - 7.1mg	
14.	Acanthaceae	6	0.001mg - 10.6mg	
15.	Asclepidaceae	4	0.007 mg - 0.01 mg	
16.	Ulmaceae	1	0.01mg	
17.	Santalaceae	1	0.3mg	
18.	Cucurbitaceae	1	0.01mg	
19.	Geraniaceae	1	0.2mg	
20.	Sapindaceae	2	0.01 mg - 0.03 mg	
21.	Solanaceae	3	0.01 mg - 0.4 mg	
22.	Lamiaceae	4	0.4mg - 5.1mg	
23.	Caesalpinaceae	3	0.01mg - 0.6mg	
24.	Capparidaceae	1	0.8mg	
25.	Poaceae	2	0.0007mg - 0.0009mg	
26.	Verbenaceae	3	0.01 mg - 0.6 mg	
27.	Onagrceae	1	0.0007mg	
28.	Pedaliaceae	2	0.1mg – 1g	
29.	Sapotaceae	1	0.3mg	
30.	Rhamnaceae	1	0.05mg	
31.	Lythraceae	1	0.001mg	

Table: 4 Sculpturing pattern of the seeds.

C M-	Carlatania a settam	No. of Town
5. NO	Sculpturing pattern	No.of. Laxa
1.	Chagrenate	28
2.	Scabrate	11
3.	Reticulate	11
4.	Echinate	7
5.	Regulate	6
6.	Cicatricose	6
7.	Corrugate	5

Diversity Of Fruit	And Seed Morphology In	Shivan Malai Flora	Of Eastern Ghats	Of Salem District
200000000000000000000000000000000000000			oj z astette onans	

8.	Baculate	5
9.	Striate	5
10.	Piliferous	3
11.	Granular exine	2
12.	Clavate	1

IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) is UGC approved Journal with Sl. No. 5012, Journal no. 49063.

L_____

Anitha. M Diversity Of Fruit And Seed Morphology In Shivan Malai Flora Of Eastern Ghats Of Salem District In Tamilnadu, India." IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS), vol. 12, no. 6, 2017, pp. 93-100.