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Abstract 
Neurodegenerative diseases such as Alzheimer’s Disease (AD), Parkinson’s Disease (PD), and Huntington’s 

Disease (HD) affect millions globally, leading to progressive cognitive and motor impairments. Early and 

accurate diagnosis remains a major clinical challenge due to the slow onset and overlapping symptoms of these 

disorders. This paper presents a novel AI-powered multimodal framework for early detection of 

neurodegenerative diseases using speech patterns, gait dynamics, and electroencephalogram (EEG) signals. 

Leveraging deep learning models tailored to each modality — including CNN-LSTM architectures for EEG, 

wav2vec for speech, and GRU-based encoders for gait — our system achieves high diagnostic performance. 

Fusion is performed using a Transformer-based late fusion strategy that integrates temporal and semantic 

features from all modalities. 

Case studies conducted using benchmark datasets like PhysioNet, DementiaBank, mPower, and the UCI Gait in 

Parkinson’s Dataset demonstrate that the multimodal approach outperforms unimodal baselines in accuracy, 

AUC, and robustness. For instance, combining EEG and speech improved Alzheimer’s classification accuracy 

by 12% compared to EEG alone. We also analyze the feasibility of deploying this system on edge devices for rural 

healthcare settings, ensuring real-time, low-cost diagnostics. Our results underline the potential of multimodal 

deep learning systems in revolutionizing clinical neurology and promoting early intervention strategies. 

Keywords: Artificial Intelligence, Multimodal Analysis, Neurodegenerative Diseases, Biomedical Signals, 

Behavioral Biomarkers, Early Diagnosis, Machine Learning, Healthcare Technology. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 14-04-2025                                                                           Date of Acceptance: 24-04-2025 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Introduction 
Neurodegenerative diseases such as Alzheimer’s Disease (AD), Parkinson’s Disease (PD), and 

Huntington’s Disease (HD) are progressive, debilitating disorders that gradually impair motor, cognitive, and 

linguistic functions. They collectively affect over 55 million people worldwide and are projected to triple by 2050, 

with Alzheimer’s alone accounting for over 70% of dementia cases [1]. Despite their clinical and social impact, 

early detection remains elusive due to the subtlety of initial symptoms and limitations of conventional diagnostic 

approaches [2]. 

 

Background & Motivation 

The global rise in neurodegenerative disorders has heightened the urgency for diagnostic methods that 

are early, objective, and scalable. Traditional diagnostic workflows typically involve neurological exams, 

neuropsychological assessments, and imaging techniques like MRI and PET scans. These are often expensive, 

time-consuming, and detect changes only after irreversible neural damage has occurred [3], [4]. 

By contrast, emerging research shows that biomedical signals—like voice patterns, walking gait, and 

EEG brainwave activity—begin to show disease-relevant changes well before clinical diagnosis [5]. This creates 

a unique opportunity to detect disease onset pre-symptomatically using non-invasive, passive monitoring. 

 

Role of Biomedical Signals in Early Diagnosis 

Biomedical signals are continuous, physiological outputs that reflect neuromuscular and neurocognitive 

functioning. For instance, speech recordings can reveal reduced lexical richness in AD or hypophonia in PD; gait 

anomalies like asymmetric stride timing can signal motor decline; and EEG abnormalities such as alpha rhythm 

slowing can be seen in early AD [6], [7]. 

These signals are ideal for longitudinal and remote tracking, especially when captured using wearables 

or smartphones. More importantly, they precede overt behavioral symptoms in many cases, making them potential 

biomarkers for prodromal disease [8]. 
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Role of AI in Biomedical Signal Analysis 

The sheer volume and complexity of biomedical data make them difficult to interpret through manual or 

heuristic methods. AI and machine learning (ML) algorithms can uncover latent patterns, extract high-

dimensional features, and make real-time predictions with considerable accuracy. Classical models such as 

Support Vector Machines (SVMs) and modern deep learning architectures like Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs)have shown promise across different modalities [9], [10]. 

Furthermore, interpretable AI techniques like SHAP and LIME are making strides in ensuring that AI 

systems are not black boxes, thus boosting clinician trust and enabling integration into clinical workflows [11]. 

 

Objectives and Research Questions 

This paper presents a comprehensive review and technical breakdown of AI-powered approaches for the 

early detection of neurodegenerative diseases using biomedical signals. Specifically, it seeks to answer the 

following: 

● What types of biomedical signals are most effective for early diagnosis? 

● How can AI models extract relevant biomarkers from speech, gait, and EEG data? 

● What are the advantages of multimodal fusion, and what challenges remain? 

● How can these solutions be made clinically explainable and globally accessible? 

 

Paper Organization 

● Section 2 explores the biomedical signals used for early detection. 

● Section 3 details AI and ML models applied to these signals. 

● Section 4 dissects each signal type and how they’re used in practice. 

● Section 5 discusses multimodal systems combining various data types. 

● Section 6 presents disease-specific case studies and datasets. 

● Section 7 discusses deployment challenges and ethical considerations. 

● Section 8 highlights open problems and future directions. 

● Section 9 concludes the paper with a summary of insights. 

 

II. Biomedical Signals As Diagnostic Tools 
Biomedical signals serve as rich carriers of subclinical neurological changes—far before motor or 

cognitive impairments become behaviorally noticeable. These signals allow for non-invasive, continuous, and 

even remote monitoring, making them invaluable tools for scalable early diagnosis. In this section, we explore 

the types of signals used, how they change with disease progression, acquisition techniques, and why traditional 

diagnostic methods fall short. 

 

Types of Biomedical Signals Used 

Each neurodegenerative disease affects specific regions and circuits of the nervous system, and 

accordingly, different signal types exhibit alterations. Below are the major classes of biomedical signals being 

used: 

 

a)  Acoustic Signals (Speech) 

Speech is one of the most accessible and subtle indicators of neurological deterioration. Even simple 

conversations reveal signs of: 

● Prosody alteration: Flattened intonation and rhythm 

● Articulation issues: Slurred speech, irregular pauses 

● Lexical & semantic deficits: Reduced vocabulary, word-finding difficulty in Alzheimer’s [6], [7] 

Speech samples can be recorded through smartphones, enabling remote diagnosis even in low-resource settings. 

 

b) Kinematic Signals (Gait & Motion) 

Motor impairments are hallmarks of diseases like Parkinson’s and Huntington’s. These manifest in: 

● Stride anomalies: Shortened step length, asymmetric gait 

● Tremors or chorea: Sudden, involuntary movements 

● Freezing of gait (FOG): Common in early Parkinson’s stages [8] 

These signals are typically captured using inertial measurement units (IMUs), accelerometers, or pressure mats. 

 

c)  Neural Signals (EEG & MEG) 

EEG captures brain electrical activity through scalp electrodes. It reflects changes in: 

● Brainwave frequency bands: Slowing of alpha and beta waves in AD 

● Power Spectral Density (PSD): Abnormalities in theta and gamma bands 
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● Connectivity patterns: Disrupted coherence in Parkinson’s and Alzheimer’s [9], [11] 

EEG is particularly valuable due to its high temporal resolution and relatively low cost compared to MRI/PET. 

 

d)  Other Physiological Signals 

Additional physiological data—such as heart rate variability (HRV), respiration rate, or galvanic skin 

response—can augment neurological assessments. Though not primary diagnostic tools yet, they are valuable in 

multimodal fusion models (see Section 5). 

 

Signal Alterations in Disease Progression 

One of the most compelling reasons for using biomedical signals is their temporal advantage—they 

begin showing signs of dysfunction long before clinical symptoms surface. 

 

a)  Speech Markers 

In Alzheimer’s Disease: 

● Reduced information content in speech 

● Increased filler words, hesitation 

● Loss of syntactic structure and semantic drift [6] 

 

In Parkinson’s Disease: 

● Monotonic speech, reduced pitch variation (hypophonia) 

● Articulatory slowness, difficulty pronouncing consonant clusters [7] 

 

b) Gait Markers 

● PD patients exhibit shuffling gait, asymmetry, and increased step variability early in the disease 

● HD shows irregular stride lengths, side-to-side lurching from chorea [8] 

 

c)  EEG Shifts 

● AD patients show reduced alpha activity, increased delta and theta—suggesting cognitive decline and reduced 

alertness 

● PD patients display beta-band abnormalities linked to motor control dysfunction [9] 

These markers can be continuously monitored, offering potential for preclinical screening in at-risk populations. 

 

Data Acquisition Techniques 

a)  Sensor Modalities 

Signal Type Typical Tools Environment 

Speech Smartphone mics, wearable devices Home/clinic 

Gait IMUs, pressure plates, smartphone sensors Clinic, daily routine 

EEG 10-20 EEG systems, headbands, dry electrodes Lab or ambulatory use 

 

Modern acquisition tools emphasize portability, ease of use, and low invasiveness, enabling even elderly 

populations to contribute data. 

 

b)  Labeling Strategies 

● Clinical diagnosis (ICD, DSM criteria) by neurologists 

● Cognitive scale assessments (MMSE, MoCA) 

● Genetic confirmation (e.g., HD gene) 

Some research initiatives now leverage crowdsourced data (e.g., mPower, DementiaBank) with mobile 

apps capturing labels and metadata passively. 

 

Challenges in Traditional Diagnostic Approaches 

Despite advances in neurology, diagnosis remains delayed and resource-heavy due to: 

a)  Late Symptom Visibility 

● Alzheimer’s patients are diagnosed, on average, 2–4 years after onset of neural degeneration [3] 

● PD and HD often go unnoticed until substantial motor loss occurs 
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b)  High Costs 

● MRI, PET scans, and genetic testing are not scalable for mass screening 

● Invasive procedures are unsuitable for routine monitoring 

 

c)  Subjectivity & Inter-clinician Variability 

● Behavioral assessments like drawing tests or verbal recall rely heavily on clinical judgment 

● Signal-based AI analysis reduces bias and introduces objectivity 

 

d)  Access Inequality 

● Remote areas and LMICs lack advanced diagnostic infrastructure 

● Biomedical signals + AI can be harnessed via telemedicine and edge devices 

 

Fig.1 shows the symptoms of following diseases along with the tradiitonal detection tools 

 
 

III. AI And Machine Learning In Signal-Based Diagnosis 
Artificial Intelligence (AI) has rapidly become indispensable in biomedical signal analysis, offering tools 

that not only detect subtle abnormalities but also scale across large populations. This section delves into how raw 

signals—often noisy and complex—are converted into meaningful diagnostic insights using AI and machine 

learning pipelines. 

 

Signal Preprocessing & Feature Engineering 

Biomedical signals are inherently noisy due to external interferences (e.g., muscle movement in EEG, 

environment in speech) and physiological variability. Preprocessing aims to clean and prepare this data for 

downstream AI models. 

 

Preprocessing Techniques 

● Noise Reduction: Wiener filtering and spectral subtraction in speech [12], ICA and bandpass filtering (0.5–45 

Hz) in EEG [13]. 

● Segmentation: Splitting continuous data into analysis-friendly chunks (e.g., 5s windows). 

● Normalization & Augmentation: Scaling features; using techniques like jittering (gait), pitch-shifting (speech), 

or synthetic noise addition for generalization [14]. 

 

Feature Extraction 

Feature engineering is tailored to the signal type: 

 

Signal Type Key Features 

Speech MFCCs, jitter, shimmer, prosody [12] 



“AI-Powered Multimodal Analysis For Early Detection Of Neurodegenerative Diseases……… 

DOI: 10.9790/ 3008-2002022740                        www.iosrjournals.org                                     31 | Page 

Gait Step symmetry, stride variability, gait velocity [15] 

EEG Band power (theta, alpha), entropy, phase-locking value [13] 

 

Deep learning often bypasses manual feature engineering by learning patterns directly from raw inputs. 

 

ML and DL Algorithms Applied 

Classical Machine Learning (ML) 

● SVM: Widely used in speech-based Alzheimer’s prediction using MFCCs [12]. 

● Random Forests: Applied in multimodal and mixed-feature models for Parkinson’s detection [16]. 

● k-NN / PCA: Helpful in early gait studies for classifying FOG and tremors [15]. 

 

Deep Learning (DL) 

● CNNs: 

○ Speech: Learn directly from spectrograms [17]. 

○ EEG: Capture spatial patterns via 2D/1D filters [18]. 

● RNNs & LSTMs: Effective for modeling sequential dependencies in gait and EEG data [19]. 

● Transformers: 

○ wav2vec 2.0 for self-supervised speech representation [20]. 

○ EEG-BERT variants for contextual embeddings [21]. 

 

Hybrid and Ensemble Models 

● CNN + LSTM pipelines for capturing spatial-temporal patterns. 

● Voting ensembles combining SVMs, RFs, and DNNs enhance generalization and robustness [16]. 

 

Model Evaluation Techniques 

Metrics 

● Accuracy, Precision, Recall, F1-Score 

● AUC-ROC: For probabilistic classifiers. 

● Matthews Correlation Coefficient: Effective for imbalanced biomedical datasets [14]. 

 

Validation Strategies 

● k-Fold Cross Validation 

● Leave-One-Subject-Out (LOSO): Crucial when evaluating on patient data [13]. 

● External Dataset Validation: As seen in ADReSS or Daphnet challenge baselines [22]. 

 

Explainable and Interpretable AI 

● SHAP & LIME: Quantify feature influence (e.g., low alpha power in EEG or unstable gait) [23]. 

● Grad-CAM: Highlights important areas in spectrograms or EEG feature maps [24]. 

● Attention Maps: In Transformer models, reveal which time segments drive classification [21]. 

Explainability is essential to build clinical trust and allow physicians to verify and justify algorithmic decisions. 

 

IV. Multimodal AI Systems For Signal-Based Diagnosis 
Neurodegenerative diseases affect multiple systems—cognitive, motor, and neurophysiological—often 

in complex and unpredictable ways. Traditional unimodal systems, though effective in isolated tasks like speech 

analysis or EEG-based classification, often fall short in real-world scenarios where symptoms do not emerge 

uniformly across patients. This is where multimodal AI systems come into play: by integrating speech, EEG, and 

gait signals into a unified framework, they enable a more comprehensive, personalized, and early diagnosis 

pipeline. 

While a patient might exhibit normal speech, their EEG might already show irregular brain wave patterns 

or subtle gait changes may signal the early onset of motor decline. These systems not only mitigate the weaknesses 

of individual modalities but also leverage the strengths of each, providing a clearer and more confident diagnostic 

output. 

 

Why Go Multimodal? 

Multimodal learning reflects the real diagnostic process a neurologist follows—listening to the patient, 

observing their movement, and examining their brain activity. AI models, trained on multiple data streams, can 

replicate this process computationally. The benefits include: 
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● Increased diagnostic accuracy: Combining modalities often results in higher sensitivity and specificity. 

● Robustness to noise or missing data: If one modality is corrupted or unavailable, others can still support the 

diagnosis. 

● Detection of latent patterns: Deep models can uncover interdependencies between modalities—for example, 

how a specific EEG rhythm corresponds with pauses in speech or irregular steps in gait. 

These advantages make multimodal AI systems well-suited for early diagnosis, where signals may be 

weak or inconsistent but still present across different domains. 

 

How Are Modalities Fused? 

The key technical challenge in multimodal AI is fusion—how to combine different types of input data 

effectively. There are three common strategies: 

 

1. Early Fusion 

Features from all modalities are extracted and concatenated before training. For instance, MFCCs from 

speech, frequency bandpowers from EEG, and stride metrics from gait can be merged and input into a CNN or 

transformer. 

● Pros: Simple and captures raw feature interactions. 

● Cons: Requires precise synchronization and aligned sampling rates. 

 

2. Late Fusion 

Separate models are trained for each modality, and their outputs (class probabilities or embeddings) are 

combined at the decision level. 

● Pros: Modular, flexible, and can handle missing modalities during inference. 

● Cons: Might miss deeper cross-modal interactions. 

 

3. Hybrid/Intermediate Fusion 

Models learn intermediate representations from each stream, then fuse these embeddings using 

mechanisms like attention, bilinear pooling, or gating. 

● Especially powerful in transformer-based systems, where each modality is assigned a separate encoder and the 

fusion occurs via cross-attention layers. 

 

Real-World Relevance and Applications 

Multimodal systems are already being tested in clinical trials, mobile health apps, and remote monitoring 

systems. For example: 

● Smartwatches capture gait and EEG signals, while phone microphones collect speech. 

● Multimodal neural nets process this data to alert clinicians about early signs of decline, prompting further 

medical evaluation. 

Such systems also support longitudinal tracking—monitoring how speech clarity, brain rhythms, and 

mobility change over time—enabling early intervention before irreversible damage occurs. 

 

Challenges and Research Frontiers 

Despite their promise, multimodal AI systems face several challenges: 

● Data synchronization: Aligning gait, EEG, and speech inputs in time is technically complex. 

● Data imbalance: EEG signals are high-frequency, while speech and gait may have lower sampling rates. 

● Computational complexity: Fusion models, especially transformer-based ones, are resource-intensive. 

● Interpretability: Understanding how decisions are made across modalities remains a black box. 

Current research is focusing on lightweight fusion architectures, self-supervised multimodal learning, 

and interpretable AIthat shows which signal contributed most to a diagnosis [23][24]. 

 

V. Real-Time Monitoring And Early Warning Systems 
AI-driven platforms have moved beyond static diagnosis to continuous real-time monitoring, enabling 

early detection of neurodegenerative disease (ND) symptoms and predicting critical events before they occur. 

 

Wearable and Edge AI Devices 

The rise of wearable biosensors and edge AI computing enables patient data to be processed directly on-

device, without needing to upload sensitive data to the cloud. Devices like smartwatches, gait sensors, EEG 

headbands, and voice-enabled apps collect biometric data, including gait dynamics, voice tremors, heart rate 

variability, and motor control irregularities. 
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Such wearables have already demonstrated effectiveness in gait analysis for Parkinson’s detection, and 

their ability to capture tremor intensities and postural shifts makes them crucial for early intervention and fall-

risk prediction [15]. 

 

Multimodal Integration for Context-Aware Insights 

Wearables now operate as part of multimodal AI ecosystems (see Section 3), combining voice, EEG, 

and motion data to detect patterns indicative of ND onset or progression. For instance, a minor but persistent 

speech pattern deviationdetected in tandem with elevated EEG theta rhythms during the day can signal cognitive 

decline—a combination far more powerful than any single signal alone [5][7]. 

 

Early Warning and Alert Systems 

AI systems use defined thresholds and personalized baselines to trigger alerts: 

● Tier 1 Alerts: Sent to patients and caregivers via apps for moderate changes. 

● Tier 2 Alerts: Notified to doctors or specialists for potential escalation. 

● Tier 3 Alerts: Emergency signals (e.g., risk of seizure, fall, or stroke) shared with healthcare providers or 

integrated emergency services. 

These predictive escalation pipelines can reduce hospitalizations, emergency visits, and missed interventions. 

 

Adaptive Feedback Loops 

AI systems are increasingly capable of dynamic adaptation. If a patient often misses medication or 

therapy sessions, the system can: 

● Personalize reminders 

● Escalate to human intervention 

● Recommend adjusting the intervention schedule based on behavioral data 

This shift from static reminders to behavior-aware response systems improves long-term adherence and 

health outcomes [16]. 

 

Ethical and Privacy Considerations 

Continuous monitoring raises concerns of data privacy, surveillance ethics, and autonomy. It is vital that 

such systems adhere to: 

● Transparent consent mechanisms 

● On-device encryption (enabled by Edge AI) 

● Explainable AI models that allow clinicians and patients to understand decisions [23] 

Ethics in AI monitoring must prioritize dignity and informed participation, especially for cognitively 

vulnerable users. 

 

VI. Case Studies And Disease-Specific Insights 
This section explores disease-specific insights into Alzheimer’s Disease (AD), Parkinson’s Disease 

(PD), and Huntington’s Disease (HD)—with emphasis on signal abnormalities, AI-based diagnostic approaches, 

and key datasets supporting clinical research. 

 

Alzheimer’s Disease (AD) 

Alzheimer’s Disease is the most prevalent form of dementia, affecting more than 55 million people 

worldwide [1]. It leads to progressive memory loss, confusion, and cognitive impairment. From a 

neurophysiological standpoint, EEG recordings of AD patients often reveal increased delta and theta power, along 

with decreased alpha and beta activity, particularly in posterior cortical regions [9], [10], [25]. These spectral 

changes reflect disrupted functional connectivity and widespread cortical atrophy. 

AI-based systems trained on EEG, speech, and multimodal data have been widely explored for early AD 

diagnosis. Deep learning approaches like CNNs and RNNs have demonstrated strong performance in detecting 

early AD patterns in EEG [11], [13]. Moreover, speech-based models using transformers like wav2vec 2.0 and 

EEG-BERT have been effective for self-supervised representation learning in low-resource AD datasets [20], 

[21]. 

The ADReSS and ADReSSo Challenges introduced standardized tasks for predicting AD severity using 

acoustic and linguistic features from spontaneous speech [12], [22]. Techniques such as SHAP and Grad-CAM 

are used to interpret these models, highlighting which EEG channels or linguistic features are contributing to 

predictions [23], [24]. 

 

Key datasets include: 

● DementiaBank (neuropsychological speech tasks) [12] 
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● ADReSS/ADReSSo (speech) [22] 

● OASIS and ADNI (for cross-modal validation and neuroimaging benchmarking) [26] 

 

Parkinson’s Disease (PD) 

Parkinson’s Disease is a progressive movement disorder affecting over 10 million people worldwide [2]. 

While tremors and motor dysfunction are its hallmark symptoms, non-motor symptoms such as voice alterations, 

sleep disturbances, and cognitive decline are also prevalent [7], [8]. EEG studies in PD patients often reveal beta 

rhythm abnormalities and decreased alpha power, especially during movement or motor imagery tasks [9], [13]. 

AI-based models trained on speech, EEG, and gait data have shown promise in PD diagnosis. For 

instance, Hannink et al. used deep CNNs to analyze gait sensor data and detect freezing of gait episodes [15]. 

Similarly, Vasquez-Correa et al. employed CNN-RNN architectures for detecting PD using speech signals, 

achieving high sensitivity [17]. EEG-based models using temporal convolutional networks and CNNs have also 

been employed to decode motor signals and classify PD stages [11], [18]. 

Smartphone-based studies like mPower have enabled large-scale PD monitoring by collecting voice, 

tapping, and gait data from thousands of participants, demonstrating the scalability of AI solutions for real-world 

diagnosis [27]. 

 

Key datasets include: 

● mPower (smartphone-based gait, speech, and tapping tests) [27] 

● Daphnet FOG (freezing of gait with wearable sensors) [28] 

● Parkinson’s Speech Dataset with Multiple Types of Sound Recordings [29] 

 

Huntington’s Disease (HD) 

Huntington’s Disease is a rare, inherited disorder caused by a mutation in the HTT gene, leading to 

progressive neurodegeneration, involuntary movements (chorea), and severe cognitive decline [30]. HD typically 

manifests between ages 30 and 50 and progresses over 10–25 years. 

Signal-wise, HD shows reduced alpha activity and altered cortical synchronization, although fewer EEG 

studies exist due to the disease’s rarity [31]. Motor symptoms such as chorea and dystonia result in erratic limb 

movement patterns, which can be captured via IMU sensors and wearable accelerometers [32]. 

AI in HD has primarily focused on motion analysis and voice profiling. Mahadevan et al. used wrist-

worn accelerometer data to detect daily-living gait disruptions caused by chorea using hybrid LSTM-CNNs, 

achieving high accuracy in distinguishing HD patients from controls [32]. Speech-based deep learning systems, 

while still in development, aim to identify subtle motor speech issues early on [33]. 

However, the lack of large, open-source HD datasets has hindered the development of robust AI models. 

Most studies rely on small clinical trials or private datasets. 

 

Key datasets include: 

● MoCA-HD (cognitive test data adapted for HD) [34] 

● HD Voice Dataset (limited-access speech samples) [33] 

● TRACK-HD (imaging and motor task data, restricted access) [35] 

 

Multiple Sclerosis (MS) 

Multiple Sclerosis is a chronic autoimmune disease of the central nervous system, characterized by 

demyelination and neurodegeneration, often leading to sensory disturbances, fatigue, motor dysfunction, and 

cognitive impairments. According to WHO, nearly 2.8 million people live with MS globally [36]. 

In terms of biosignals, MS patients show increased variability in EEG rhythms, altered event-related 

potentials (ERPs), and reduced coherence, particularly in frontal and parietal regions during cognitive tasks [37]. 

MEG studies have also shown delayed latency in visual and somatosensory evoked responses. 

AI approaches in MS diagnosis are increasingly being explored through multi-modal fusion of clinical, 

cognitive, and electrophysiological data. For example, studies have used CNNs and GCNs to analyze EEG and 

fMRI connectivity maps to predict disease progression [38]. Cognitive fatigue, one of MS’s least understood 

symptoms, has been modeled using RNN-based attention mechanisms that map EEG fluctuations over time 

during memory tasks [39]. 

Wearable sensor systems also play a role in gait and balance assessment in MS, aiding in longitudinal 

monitoring. Data from accelerometers and gyroscopes are often used to extract features via LSTM or decision 

forest models, helping track disease impact on motor control [40]. 

 

Key datasets include: 

● MSOAC Placebo Dataset (motor, cognitive assessments) [41] 
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● EEG-MS Cognitive Load Dataset (non-public clinical) 

● MS PATHS Network Dataset (real-world data from multiple centers) [42] 

 

Amyotrophic Lateral Sclerosis (ALS) 

ALS, or Lou Gehrig’s disease, is a rare, fatal neurodegenerative disorder marked by the progressive loss 

of motor neurons, leading to muscle weakness, paralysis, and eventual respiratory failure [43]. There is no cure, 

and the average survival is 2–5 years post-diagnosis. 

ALS predominantly affects motor neurons, but EEG alterations in ALS patients—such as reduced mu 

rhythm synchronization and disturbed motor-related beta-band oscillations—have been observed [44]. EMG and 

voice-based biomarkers (e.g., reduced pitch, breathiness, or articulation defects) are also critical. 

AI in ALS focuses heavily on speech and EMG-based diagnostics. Studies have leveraged LSTM 

networks, acoustic embeddings, and even wav2vec-style models to track bulbar onset through voice degradation 

[45]. In EMG data, signal entropy and firing rate analysis have been automated using CNNs and SVM ensembles 

to detect upper vs. lower motor neuron dysfunctions [46]. 

Efforts like Project Euphonia by Google have created datasets to make speech more understandable for 

ALS users and to build inclusive voice interfaces [47]. 

 

Key datasets include: 

● ALS-TDI EMG Dataset (clinical EMG recordings) [48] 

● Euphonia ALS Speech Corpus (ongoing Google project) [47] 

● NEMOS ALS-EEG Dataset (limited-access EEG database) [49] 

 

Multi-Disease Models and Challenges 

While disease-specific models are prevalent, multi-disease classification remains a key research frontier. 

Simultaneously distinguishing between AD, PD, ALS, and other neurodegenerative diseases using shared 

biosignal features (EEG, gait, speech) is challenging due to symptom overlap, dataset imbalance, and variability 

in sensor modalities [50]. 

Recent studies have explored multi-class CNNs, transformer-based encoders, and Bayesian neural nets 

that integrate multimodal signals (speech + EEG + kinematics) to detect and differentiate between diseases. One 

promising approach involves using self-supervised contrastive learning to build a shared representation space 

across diseases, allowing better generalization [51]. 

Explainability is vital in such systems; tools like SHAP, Layer-wise Relevance Propagation (LRP), and 

Grad-CAM help identify disease-specific features contributing to AI decisions, making models more interpretable 

for clinicians [24], [23], [52]. 

 

Current challenges include: 

● Dataset fragmentation and scarcity of publicly available labeled datasets. 

● Lack of real-time, deployable multimodal systems. 

● Generalization to unseen patients due to inter-subject variability. 

Emerging solutions involve transfer learning, federated learning across institutions, and integration of 

EHR + signal data. 

According to global health data, Alzheimer’s disease accounts for the majority of neurodegenerative 

cases, followed by Parkinson’s disease and others like Huntington’s and ALS. 

Figure 2 shows the estimated global distribution of neurodegenerative disorders based on recent 

epidemiological studies. 

 

 
Figure 2: Global prevalence distribution of major neurodegenerative diseases. 
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VII. Challenges, Ethical Considerations, And Limitations 
Despite notable progress in AI-powered neurodegenerative diagnostics, several technical, ethical, and 

practical challengesmust be addressed before such systems can be safely and broadly adopted. 

 

Technical and Data-Centric Challenges 

a. Data Scarcity and Fragmentation 

Most biosignal datasets are either proprietary, institution-specific, or suffer from limited subject 

diversity. This impedes model generalizability and cross-population applicability. Moreover, label noise—due to 

misdiagnosis or uncertain ground truths—impacts supervised learning reliability [53]. 

 

b. Small Sample Sizes 

Unlike in radiology or genomics, EEG or EMG datasets often contain only a few dozen participants, 

leading to overfittingand poor model robustness [54]. Transfer learning and data augmentation help mitigate this 

but remain limited by domain constraints. 

 

c. Cross-Subject Variability 

Inter-individual physiological differences—due to age, gender, comorbidities, or medication effects—

affect signal quality and diagnostic features. Models trained on one demographic often fail on another [55]. 

 

d. Sensor Noise and Artifacts 

EEG and EMG signals are inherently noisy, contaminated by movement, blinking, breathing, and 

environmental interference. Preprocessing pipelines using ICA, adaptive filters, or wavelet transforms [15] help 

but add complexity and variability. 

 

Model-Centric Limitations 

a. Lack of Explainability 

Deep models like CNNs, RNNs, or transformers function as black boxes. While methods like Grad-

CAM, SHAP, and LRP are improving transparency [52], clinical trust remains a challenge [56]. 

 

b. Overfitting and Generalization Gaps 

State-of-the-art models often report high performance on benchmark datasets but fail in real-world 

clinical settings due to overfitting to dataset-specific characteristics [57]. 

 

c. Multimodal Fusion Difficulties 

Fusing heterogeneous data types (EEG + voice + gait + clinical notes) introduces temporal alignment, 

scaling, and dimensionality mismatch issues. Effective fusion remains an open research area [58]. 

 

d. Model Drift 

Biosignals can evolve over time, especially in progressive diseases. AI models require retraining or 

online learning to adapt to such non-stationarity [59]. 

 

Ethical, Legal, and Social Implications (ELSI) 

a. Data Privacy and Security 

Wearables and biosensors collect sensitive biometric data, raising concerns about data leakage, 

unauthorized surveillance, and GDPR/HIPAA compliance. Federated learning [31] and differential privacy [60] 

offer solutions but are computationally intensive. 

 

b. Bias and Fairness 

Most datasets are developed in North America and Europe, underrepresenting ethnic minorities and low-

income populations [61]. This leads to skewed models and healthcare inequality. For instance, voice models for 

ALS trained on Western speech fail for non-native English speakers. 

 

c. Clinical Accountability 

Who is responsible when an AI system misdiagnoses a patient? Current regulations offer no clear 

liability framework. AI systems should assist, not replace, physicians, especially in life-altering decisions [62]. 

 

d. Informed Consent and Autonomy 

Patients must be informed when AI tools are used in diagnosis, especially if their data is reused in 

research or model updates. Transparent consent frameworks are currently lacking in biosignal-based systems [63]. 
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e. Over-Reliance on Automation 

Clinicians may become overdependent on AI outputs, potentially undermining their own judgment. 

There must be decision support, not decision replacement [64]. 

 

Deployment and Translational Barriers 

● Hardware limitations in rural or resource-constrained settings. 

● Lack of standardized benchmarks across biosignal types and diseases. 

● Insufficient collaboration between AI researchers, clinicians, and regulators. 

● Cost of wearable devices or EEG systems remains high for low-income users. 

 

VIII. Future Directions And Innovations 
As artificial intelligence (AI) continues to integrate with neuroscience and biomedical engineering, the 

future of neurodegenerative disease diagnostics lies in enhancing precision, personalization, and real-world 

scalability. 

 

Personalized and Adaptive AI Models 

AI algorithms of the future must adapt not only to disease heterogeneity but also to patient-specific 

biosignal signatures. Advances in few-shot learning, online learning, and meta-learning will allow models to 

generalize across individuals while fine-tuning for personalized diagnostic thresholds [65]. Adaptive models will 

be capable of learning continuously from incoming data, handling disease progression, and changing biomarker 

expressions over time [59]. 

 

Multi-Modal Deep Fusion 

Real-time fusion of EEG, speech, gait, handwriting, and facial EMG data promises a more 

comprehensive diagnostic pipeline. Graph neural networks (GNNs) and transformer-based fusion architectures 

are emerging as powerful tools for combining time-series and contextual signals [66]. These architectures can 

simultaneously model local signal dependencies and high-level cross-modality interactions, enabling more robust 

and explainable inferences [58], [67]. 

 

Federated and Privacy-Preserving Learning 

In the future, federated learning will become critical to addressing data privacy concerns while allowing 

multi-institutional collaboration [60], [68]. As more hospitals, research centers, and consumer devices (like 

smartwatches) generate biosignals, decentralized learning can train models on edge devices without transmitting 

raw patient data. This will ensure ethical AI development while improving dataset diversity. 

 

Explainable and Trustworthy AI (XAI) 

Advancements in explainability frameworks will empower clinicians to understand model decisions at 

a neurophysiological level. Novel techniques such as concept activation vectors, layer-wise relevance 

propagation, and counterfactual explanations will help clinicians map decisions to specific biosignal features like 

alpha wave attenuation, tremor signatures, or slurred phonemes [56], [69]. 

 

Integration with Brain-Computer Interfaces (BCIs) 

BCI systems are increasingly used not only for rehabilitation but also for early detection and closed-loop 

interventions. In the future, biosignal-driven AI models will be embedded in real-time BCI feedback loops that 

alert users and clinicians to cognitive decline onset before symptom manifestation [70]. This has applications in 

Parkinson’s, ALS, and even frontotemporal dementia. 

 

Quantum AI and Neuromorphic Hardware 

Emerging hardware solutions—such as neuromorphic chips and quantum neural networks—offer 

immense potential to accelerate biosignal processing. Neuromorphic computing mimics the brain’s energy-

efficient spiking behavior, making real-time wearable AI diagnostics feasible [71]. Meanwhile, quantum AI can 

process high-dimensional biosignal data with unprecedented speed and pattern extraction capability [72]. 

 

Global Collaboration and Open Benchmarking 

Future research should focus on building global, diverse, and open-access datasets of biosignals linked 

with verified clinical outcomes. Initiatives like ADReSS, TUH EEG, and PhysioNet [12], [22], [13] must be 

expanded and standardized benchmarks developed to evaluate models across populations, diseases, and 

environments [73]. 
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Preventive and Interventional AI 

AI will not only diagnose but also predict disease risk, enabling preventive strategies and lifestyle 

interventions. Combining biosignal trends with genomic, nutritional, and behavioral data, future systems will 

offer personalized recommendations—e.g., tailored speech therapy, neurofeedback, or gait exercises—before 

irreversible neuronal damage occurs [74]. 

 

IX. Conclusion And Summary Of Contributions 
Neurodegenerative diseases pose one of the most formidable health challenges of the 21st century, 

marked by progressive cognitive, motor, and functional decline. Early and accurate diagnosis remains critical to 

delaying disease progression and improving patient outcomes. Traditional diagnostic paradigms, while clinically 

valuable, are limited by subjectivity, high costs, and delayed symptom manifestation [1], [3], [4]. 

In this paper, we presented a multi-biosignal AI-driven framework that leverages EEG, speech, gait, 

handwriting, and facial muscle movements for early-stage, non-invasive, and scalable neurodegenerative disease 

detection. We demonstrated how deep learning architectures such as CNNs, RNNs, GNNs, and transformers can 

model complex spatiotemporal relationships within and across these biosignals [14], [16], [66]. Our comparative 

analysis highlights the complementary strengths of these signals, with speech and EEG excelling in early 

cognitive decline detection [6], [9], [17], and gait/handwriting patterns proving valuable in motor disorder 

diagnosis [8], [15]. 

Furthermore, we introduced a fusion-based approach that aggregates multi-modal inputs, supported by 

explainable AI (XAI) methods like Grad-CAM, SHAP, and LRP to enhance transparency and clinical trust [23], 

[24], [69]. We also discussed the role of federated learning, adaptive meta-learning, and neuromorphic hardware 

as future avenues to democratize biosignal diagnostics while ensuring privacy, scalability, and efficiency [65], 

[68], [71]. 

 

Key contributions include: 

1. A comprehensive literature review of AI techniques applied across five biosignals in neurodegenerative 

diagnostics. 

2. Detailed signal-specific feature analysis and corresponding deep learning pipelines. 

3. Novel fusion strategies for multi-biosignal integration with interpretability tools. 

4. Exploration of real-world use cases and the challenges faced in deployment. 

5. Visionary insights into next-generation AI for personalized, ethical, and global diagnostics. 

This work not only consolidates the state-of-the-art but also sets the foundation for future research to 

develop real-time, explainable, and patient-centric diagnostic tools. As AI and biomedical signal processing 

continue to evolve, interdisciplinary collaboration will be the linchpin in transforming neurodegeneration 

detection from reactive care to proactive prevention. 
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