Cloning and Sequencing of a Coleopteran specific Novel *cry* gene of a local isolate of *Bacillus thuringiensis*

Kausar Malik* and Mir Muhammad Ali Talpur

Lahore College for Women University, Lahore. Department of Microbiology, Shah Abdul Latif University, Khairpur Mir's.

Abstract: A cry gene, obtained from a locally isolated Bt. strain, CAMB # 30382 (isolated from grain dust of Shakargarh, Punjab, Pakistan), highly effective against Tribolium castaneum (Commonly known as red flour beetle), was amplified through Polymerase chain reaction (PCR) by using specific primers. The gene was ligated to a cloning vector pGEM-T and was cloned into an E.coli strain DH5a. The positive clones were screened for the cry gene content.

The partial sequencing of the cloned gene from this strain was accomplished and sequence homology was analyzed. The alignment of the sequenced gene with gene sequences present in gene data bank showed two silent mutations, at nucleotide 676 and 701. However, two other nucleotide changes at position 2887 and 2902 of holotype cryIIIf (cry8Ca) gene were resulting from amino acid change near 3' end were observed. These changes were causing change in the stretch of amino acids from valine, tyrosine, serine & glutamine in the holotype cryIIIf to glycine, phenylalanine, alanine & asparginine respectively in the clone from CAMB isolate 30382. This change may have drastic effect on the toxicity spectrum of the Cry protein isolated from this local isolate in comparison with the Cry protein from the Buibui. serovar japonesis. Partial sequencing has shown it to be a varient of cryIII gene, which may be a novel cry gene.

Key Words; Cloning, Bacillus thuringiensis, cry gene, Sequencing, Coleopteran.

I. Introduction

Bacillus thuringiensis is a gram-positive bacterium, widely used in agriculture as a biological pesticide. The protein inclusion is composed of one or more types of delta-endotoxins Cry and Cyt proteins. Many *Bacillus thuringiensis* with different host spectra have been identified (Burges 1981). The delta-endotoxins are mostly used in agriculture by organic and other growers to control agronomically important pests (Dulmage 1981; Guillet et al., 1990; and Mulla 1990).

Bt. produces several insecticidal crystalline proteins (ICP/Cry proteins) at the time of sporulation. The β -exotoxins and δ -endotoxins are used for the control of pests and vectors of diseases. The crystalline delta endotoxins are predominantly synthesized as long, inactive protoxins that are activated by proteolysis in the insect gut. The examples include Cry 1, Cry4A, Cry4B, having molecular weights of 130 to 140 kDa are processed *Bacillus thuringienesis* to active 65 to 70 kDa toxins (Gill et al., 1992,; Hofte and whitely; 1989) while Cry2A, Cry3A, Cry10A and Cry11A are naturally truncated toxins with molecular weights ranging from 65-80 kDa. Sequence analyses of many genes have suggested that significant changes in the activity spectrum can be attributed to comparatively small changes in amino acid sequences (Rahat 1998).

The red flour beetle, *Tribolium castaneum* is an important pest of stored grains. These beetles live mainly in grain store mills and bird nests (Roth and Kurtz 2008).Both Larvae and adults of the red flour beetle feed on broken kernels and grain dust. These stored pests are mostly get rid of in the house in infected cereal or flour while some red flour beetles survive on food material in cervices, furniture and cabinet cracks and can increase their descendents (Haque et al., 2000).

Bacillus thuringienesis contain valuable environment-proteins of cry genes. So it is considered as friendly bio pesticide, which constitutes 90% of the world significance by production of resistant crops, such bio pesticide commercially. Its insecticidal properties were analyzed against maize, cotton, potato,rice etc (Kumar 2002).

Incorporation of Bt technology into an integrated pest management is the preferred strategy to achieve effective insect control while minimizing target resistance (Andow *et al.*, 2001).

To increase the effacacy and persistance of Bt. toxins for field use, crystal proteins genes (cry genes) have been cloned and expressed in *E. coli, Bacillus subtitles, Pseudomonas fluorescens, Clavibacter, Baculovirus* and nuclear polyhedrons virus (Haider and Ellar, 1988; Hofte *et al.*,1987; Honee *et al.*,1988; Sen *et al.*,1988; Ge *et al.*,1990; Merryweather *et al.*,1990; Martins *et al.*,1990)

The first cloning of Cry IAa gene from *Bacillus thuringiensis* subsps. *kurstaki* was reported by Schenpf and Whiteley 1981. It has been established that the delta-endotoxin genes whose products are specifically active on different orders of insects show only limited similarity and are distantly related (Hernest et al., 1986).

The *cryIII*A gene was cloned and sequenced by Sekar et al., 1987 and Mc Pherson et al., 1988 from Bt. *var tenebrionis*, which showed 69 percent homology with *cry III*B gene from Bt. var tolworthi (Sick et al., 1990).

II. Material And Methods

bacterial strains and media

Based on molecular characterization, a *Bacillus thuringiensis* strain C.E.M.B 30382, containing *cryIII* gene, highly effective against *Tribolium casatenium* was isolated and selected for gene cloning and sequencing. The Bt. strain isolated from the local environment was cultivated in S.P.Y medium having the composition in g/l: ammonium sulphate 20, potassium dihydrogen phosphste 6, dipotassium hydrogen phosphate 14, sodium citrate 1, magnesium sulphate 0.29, yeast extrat 1 and glucose (sigma) 6 was used as a carbon source. *E.coli* strain DH5-alpha was chosen as recipient strain and grown in LB medium containing g/l: tryptone (Difco) 10.0, Yeast extract (Difco) 5.0, NaCl 10.0, and ampicillin 50 ug/ml at 30 °C for 24 hours.

DNA isolation and gene identification

To isolate and identify the gene of interest, the total genomic DNA was isolated by the method of Kronstad et al., (1983), (fig 1). An overnight culture from a single colony of bacterial cells was diluted in SPY medium in 1:100 ratio. Cells were grown at 35 °C with shaking to optical density 0.8 at 600 nm in 2.8 Litre flask with shaking 200 rpm. Cells were harvested by centrifugation at 4°C at 7K rpm for 10 min. The cell pellet was washed with solution containing 100mM Tris-HCl (pH 7.9) and 10 mM EDTA. Lysozyme was added to give a concentration of 0.5 mg/ml. Mixture was incubated at 37°C for 20 minutes. 6.25 ml of solution containing 100 mM tris-HCl (pH 7.5), 100 mM NaCl and 2% SDS was were added to lyse the cells. Preparation was mixed by gently inverting the tubes several times. Incubation was given at 60 °C, till the preparation was clear. Extraction was done with Phenol-Chloroform mixture. Aqueous layer was removed with the wide bore pippette. 2.5 volume of chilled Ehanol was added and DNA was spooled out with a glass rod. DNA was rinsed with 70% Ethanol, air dried and resuspended in 500 ul to 1ml of T.E (10mM Tris-HCL pH 7.9,1mM EDTA). DNA was dialyzed extensively against cold TE buffer at 4°C and concentration measured by taking O.D.260.

Gene amplification through Polymerase Chain Reaction

To amplify the gene of interest, Polymerase Chain reaction was done by a modification by saiki et.al., (1988). A total volume of 50 ul contained 2.5 mM MgCl2, 10mM tris-HCl pH 8.0, 100 uM of each deoxyribonucleotide triphosphate (dNTPs), 50 pmol of each forward and reverse primer, one unit Taq DNA polymerase and 5-100 ng of DNA template. Overlaid 50-ul light mineral oil on the reaction mixture. The mixtures were amplified in 35 cycles by programming the PCR machine (M J research) according to the expected length of the PCR product.

To amplify 3.4 kbps, DNA fragment from the genomic DNA of isolate 30385, the PCR programme was as follows:

1 Cycle 95°C 5 minutes 35 Cycles $95^{\circ}C$ 1 minute 59°C 1 minute $72^{\circ}C$ 4 minutes 1 Cycle 95[°]C 1 minute 59°C 1 minute $72^{\circ}C$ 4 minutes

Once the PCR reaction was complete, it was kept at 4^oC till further processing.

Purification of DNA fragments

DNA fragments were isolated from the agarose gel using Qiaquick gel extraction kit (cat #28704). The specific DNA samples were run through 1% agarose gel. The required fragment of 3.48 kb was cut out of the gel under UV light (by using UV transilluminator), and transferred to an eppendorf tube. The gel slice was weighed and three times volume of buffer QG was added from the kit. In addition it was incubated at 50 C in a water bath for approximately 10 minutes. Now added equal volume of isopropanol and mixed gently. Applied this mixture to Qiaquick column and centrifuged for 1 minute. Discarded the flow through and added 0.75 ml buffer PE (wash buffer) to the column and centrifuged for 1 minute. Discarded the flow through and eluted the DNA bound with column, with 33-50-ul water.

Plasmid DNA Isolation.

Plamid DNA was isolated by alkaline lysis method (Brinboin and Dolly, 1979). Single bacterial colony was used to inoculate 5 ml of LB medium containing the antibiotic ampicillin and grown at 35 $^{\circ}$ C with vigorous shaking for 12-16 hours (overnight). 1.5 ml of overnight culture was shifted to a micro centrifuge tube and centrifuged at 12000 rpm for 3 minutes. The supernatant was decanted and the pellet was re-suspended in 100 ul of ice cold cell suspension buffer (25M Tris Hcl pH 8.0,10 mM EDTA, 50mM glucose,2 mg/ml lysozyme) and incubated for 5 minutes. Then 200 ul of a freshly prepared cell lysis solution (1% SDS, 0.2 % NaOH) was added. After immediately mixing by inverting the tube several times and 5 min. incubation of lysate at room temperature, 150 ml of ice-cold 3M potassium acetate solution (pH 4.8) was added and again mixed by inversion followed by 15 minutes incubation on ice. Centrifugation was done at 12000 rpm for 15 minutes and clear supernatant was extracted with an equal volume of Phenol: Chloroform: Isoamylalcohol (25:24:1) mixture. Extracted aqueous phase was carried out at -20 $^{\circ}$ C for 15 minutes followed by centrifugation at 12000xg for 15 minutes. The pellet was rinsed with ice-cold 70% Ethanol, air dried and re-suspended in 25 ul of nuclease free water.

Automated DNA sequencing

Automated DNA sequencing (ABI) from Applied Biosystems was used along with ABI PRISM Ready reaction DyeDeoxy terminator sequencing Kit according to manufacturer's instructions. This method is based on dye terminator chemistry, in which each of the four dideoxynucleotides is labeled with a different flourochrome (Prober et al., 1987; Lee et al., 1992). The ABI 377 can simultaneously detect fluorescence at four different wave lengths, set to coincide with the emission of four different fluorescent dyes. The reaction mixture is run in a single capillary so that color of each band is passing the detector represents the DNA sequences.

Performing the sequences reaction simply required the mixing of DNA (0.8 ug), primer (~ 3.2 pmol) and water with an aliquot of premixed reagents from the kit followed by 25 cycles in a thermal cycler (Perkin-Elmer). The unincorporated, labeled nucleotides were removed by ethanol precipitation and the samples air dried. Just prior to gel electrophoresis, the sample was re-suspended in a gel loaded buffer (TSR Template Solubilizing Reagent) and heated to denature the DNA.

The raw sequence data collected by the system were processed by associated software to get an electropherogram and finally the DNA sequence in the text form.

Homology Studies of Sequenced Nucleotides

Homology studies of the nucleotide sequences of the clones with known nucleotide sequences present in gene data bank was done through standard nucleotide-nucleotide BLAST (Basic Local Alignment Search Tool) software available at NCBI website.

www.ncbi.nlm.gov/home/Blast

Nucleotide sequences were put in FASTA format and a non redundant search was conducted. The results were obtained at HTML document showing the statistical score values for homology along with nucleotide to nucleotide homology.

Electro competent Cell Preparation

A single colony from freshly growing plate was inoculated into 5ml of LB medium and grown with vigorous shaking at 37C until O.D was 0.8 at 550nm. Cells were harvested by centrifugation and pellet washed twice by re-suspension in ice-cold 10% sterile glycerol in sterilized de-ionized water. The cell pellet was then re-suspended in 1ml of 10% glycerol to bring the final cell density to 200-250 O.D 550 units. Cells were aliquoted in 100ul aliquots and stored at -70 C.

Cloning procedure

Total genomic DNA, isolated from the Bt. strain 30382, was used to amplify a 3.48 kbp full length cry3 type gene by using specific primers. Ligation of the amplified fragments was done in pGEM-T vector according to the instructions supplied with kit (Promega). The ligation mixture contained 11 ul sample containing 60 ng of vector, 180 ng of insert and 5 ul of Buffer (Progema). Ligation reaction was achieved with 3 units of T4 DNA ligase (Promega) at 16 C for 24 hours. The *E.coli* DH5 α (alpha) was used for high ligation mixture transformations. For the transformation of ligated DNA, the ligation mixture was ethanol precipitated, washed with 70 % ethanol, dried and resuspended in 5 ul of ionized water. Half of the resuspended ligation mixture was used in electroporation of 100 ul of DH5 α cells. Pulse for electroporation was given at 2.5 K.V voltage, 200 ohms resistance & 25 µF capacitance. After electroporation, cells were immediately shifted to SOC Medium (MgCl 2. 6H2O, MgSO4.7H2O) & grown for 1 hour. The transformants were selected on LB agar plates containing X-gal, IPTG, at 40 ug/ml concentration each and Ampicillin at the concentration of 100 ug/ml for Blue/white colony selection. White colonies analyzed contained the recombinant plasmid. The positive

clones were also confirmed through PCR amplification using forward and reverse primers. The positive clones were also confirmed through restriction digestion with EcoR I enzyme.

III. Results

To isolate and identify the gene of interest, the total genomic DNA was isolated by the method of Kronstad et al., (1983), (fig 1).

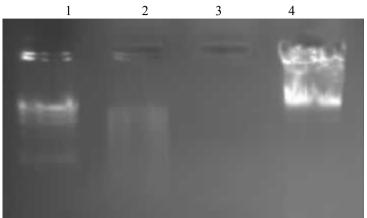


Fig 1.: Isolation of total genomic DNA from the locally isolated

Bt strain 30382. Lane 1. : λ / hind III marker, Lane 2; genomic DNA subjected to the restriction , Lane3;-ve control, Lane 4; +ve control.

To amplify the gene of interest, Polymerase Chain reaction was done by a modification by saiki et.al., (1988). 1 2 3

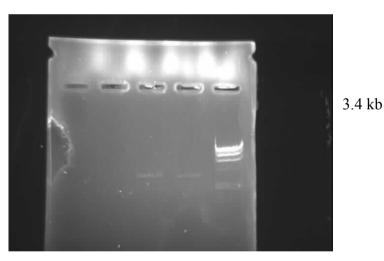


Figure 2: PCR amplification of cry3 gene, using specific primers, from the isolated genomic DNA..

Lane1 & 2: amplified 3.4 kb cry3 gene. Lane3: λ /Hind III DNA Marker.

For cloning of the delta- endotoxin gene a complete coding sequence including initiations as well as termination codons was amplified. A number of PCR reactions were performed. The PCR product was run through agarose gel. The 3.4 kb fragment was eluted from gel using DNA purification kit (QIAGEN). PCR product was cloned in pGEMT vector (Promega) (Fig3), specially designed for cloning of the PCR products with A-overhanging at 5' terminal. Ligation was followed by transformation through electroporation in *E.coli* strain DH5 α . Transformants were selected on LB agar plates which contained ampicillin (100ug/ml), X-gal (40ug/ml), and IPTG (40ug/mg), for blue /white colony selection.

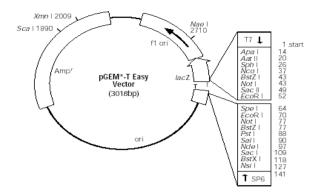


Fig: 3. Restriction map of pGEM-T vector, showing restriction sites for EcoR1.

The positive clones were also confirmed through PCR amplification using forward and reverse primers. The positive clones were also confirmed through restriction digestion with *EcoR I* enzyme (fig 4). White colonies analyzed contained recombinant plasmids. Positive clones were confirmed by PCR amplification of the gene cloned, using reverse and forward primers (Fig 4). The positive clones were also confirmed through restriction digestion with *EcoR I*.

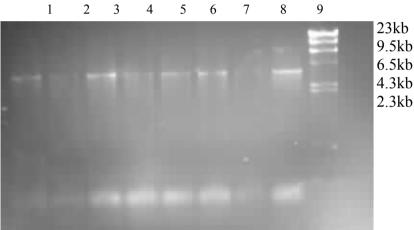


Fig 4: Confirmation of cry3 gene within the clones through PCR, using specific primers. Lane 1-8, amplified 3.4 kb cry3 gene, Lane 9:λ/ hind III marker

The DNA from a selected clone was used as a template with 2 oligonucleotide primers for the full length sequencing of the gene through automated DNA sequencing system. The nucleotide sequence comparison of the cloned gene with cry3f gene sequence present in gene data bank (Gene bank Accession number U04366) showed homology between two genes with some significant nucleotide changes. Homology study studies of the sequencing data with the gene sequences present in gene data bank showed that it was a variant of a novel CryIII protein gene reported by Sato *et al.* (1994).

POF1: 1	taatcaaaatgagtatgaaattatagatgctttatcacccacttctgta	50
U04366 1	atgagtccaaataatcaaaatgagtatgaaattatagatgctttatcacccacttctgta	60
PCF1: 51	tccgataattctattagatatcctttagcaaacgatcaaacgaacacattacaaaacatg	110
U04366 61	tccgataattctattagatatcctttagcaaacgatcaaacgaacacattacaaaacatg	120
PCF1: 111	aattataaagattatctgaaaatgaccgaatcaacaaatgctgaattgtctcgaaatccc	170
U04366 121	aattataaagattatetgaaaatgaccgaatcaacaaatgetgaattgtetegaaateee	180
PCF1: 171	gggacatttattagtgcgcaggatgcggttggaactggaattgatattgttagtactata	230
U04366 181	gggacatttattagtgcgcaggatgcggttggaactggaattgatattgttagtactata	240
PCF1: 231		290
U04366 241	ataagtggtttagggattccagtgcttggggaagtcttctcaattctggqttcattaatt	300

PCF1: 291 gg	cttattgtggccgtcaaataatgaaaatgtatggcaaatatttatgaatcgagtggaa	350
		2(0
004366 301 gg PCF1: 351	cttattgtggccgtcaaataatgaaaatgtatggcaaatatttatgaatcgagtggaa gagctaattgatcaaaaaatattagattctgtaagatcaagagccattgcagatttagct	360 410
U04366 361 PCF1: 411	gagctaattgatcaaaaaatattagattctgtaagatcaagagccattgcagatttagct aattctagaatagctgtagagtactatcaaaatgcacttgaagactggagaaaaaaaccca	420
ICI1. 411		470
U004366 421	aattetagaatagetgtagagtactateaaaatgeaettgaagaetggagaaaaaaeecea	
PCF1: 471	cacagtacacgaagcgcagcacttgtaaaggaaagatttggaaatgcagaagcaatttt	
U04366 481	cacagtacacgaagcgcagcacttgtaaaggaaagatttggaaatgcagaagcaatttt	
PCF1: 531	cgtactaacatgggttcattttctcaaacgaattatgagactccactcttacccacatat	590
U04366 541	cgtactaacatgggttcattttctcaaacgaattatgagactccactcttaccoacatat	600
PCF1: 591	gcacaggccgcctctctgcatttgcttgtaatgagggatgttcaaatttacgggaaggaa	650
U04366 601	gcacaggccgcctctctgcatttgcttgtaatgagggatgttcaaatttacgggaaggaa	660
U04366: 651 tg	ggggatatcetctaaaatgatattgacetattttataaacaacaagtatettataegget	710
U04366 661	tggggatatcetcaaaaatgatattgacctattttataaataacaagtatettatacgget	720
PCF1: 711		770
U04366 721	agatatteegateattgegtocaatggtacaatgetggtttaaataaattaagaggaacg	780
PCF1:		0.40
U04366 781 PCF1:	ggtgctaagcaatgggtggattataatcgtttccgaagagaaatgaatg	840
004366 841	gatetagttgcattatttecaaactacgatgcgcgtatatatccactggaaacaaatgca	900
PCF1: U04366 901	gaacttacaagagaaattttcacagatcctgttggaagttacgtaactggacaatcgagt	960
PCF1: 004366 961	accettatatettggtacgatatgattccagcagetetteetteattttcaaegetegag	1020
PCF1: U04366 1021	aacctacttagaaaacctgatttetttactttgetgeaagaaattagaatgtataeaagt	1080
PCF1:	aactactagaaaactgattictitactitgetgeaagaaattagaatgtatacaagt	1080
U04366 1081	tttagacaaaacggtacgattgaatattataattattggggaggacaaaggttaaccctt	1140
PCF1: U04366 1141	tcttatatctatggttcctcattcaataaatatagtggggttcttgccggtgctgaggat	1200
PCF1:		12(0
U04366 1201 PCF1:	attattcctgtgggtcaaaatgatatttacagagttgtatggacttatataggaaggtac	1260
U04366 1261	acgaatagtctgctaggagtaaatccagttactttttacttcagtaataatacacaaaaaa	1320
PCF1: 004366 1321	auttattagan gangan anottagan gang an anotagan an anottagattagan gang gang an	a 1380
PCF1:	acttattogaagccaaaacaattcgcgggtggaataaaaacaattgattccggcgaaga	a 1360
U04366 1381	ttaacttacgaaaattatcaatcttatagtcacagggtaagttacattacatcttttgaa	1440
PCF1: U04366 1441	ataaaaagtaccggtggtacagtattaggagtagttcctatatttggttgg	1500
PCF1:		1000
U04366 1501	agtgccaqtcgcaataactttatttacgcaacaaaaatctcacaaatcccaatcaat	1560
PCF1: U04366 1561	gcaagtagaactagcggtggagcggtttggaatttccaagaaggtctatataatggaqg	a 1620
PCF1:		
U04366 1621 PCF1:	cctgtaatgaaattatctgggtctggttcccaagtaataaacttaagggtcgcaacaqat	1680
U04366 1681	gcaaagggagcaagtcaaagatatcgtattagaatcagatatgcctctgatagagcggg	t 1740
PCF1:		

U04366 1741	aaatttacgatatettecagatetecagagaateetqeaacetatteagettetattget	1800
PCF1: U04366 1801	tatacaaatactatgtctacaaatgcttctctaacgtatagtacttttgcatatgcagaa	1860
PCF1: 004366 1861	tctggccctataaacttagggatttcgggaagttcaaggacttttgatatatctattaca	1920
PCF1:	101920001111111011120202010202001115411111011110	
U04366 1921 PCF1:	aaagaagcaggtgctgctaacctttatattgatagaattgaatttattccagttaatacg	1980
U04366 1981 PCF1:	ttatttgaag cagaag aag acctag at gtgg caa ag aa ag ctgtgaat gg cttgtttacg	2040
U04366 2041 PCF1:	aatgaaaaagatgccttacagacaagtgtaacgqattatcaagtcaatcaagcggcaaac	2100
U04366 2101 PCF1:	ttaatagaatgcctatccgatgagttatacccaaatgaaaaacgaatgttatgggatgca	2160
U04366 2161 PCF1:	gtgaaagaggcgaaacgacttgttcaggcacgtaacttactccaagatacaggctttaat	222
	aggattaatggagaaaacggatggacgggaagtacgggaatcgaggttgtggaaggagat	2280
PCF1:		
U04366 2281 PCF1:	gttctgtttaaagatcgttcgcttcgtttgacaagtgcgagagaga	2340
U04366 2341 PCF1:	tatccaacgtatctctatoaacaaatagatgaatcgcttttaaaaccatatacaagatat 24	100
U04366 2401	aaactaaaaggttttataggaagtagtcaagatttagagattaaattaatacgtcatcgg 24	460
PCF1: U04366 2461 PCF1:	gcaaatcaaatcgtcaaaaatgtaccagataatctcttgccagatgtacgccctgtcaat 25	520
004366 2521	tcttgtggtggagtcgatcgctgcagtgaacaacagtatgtagacgcgaatttagcactc 25	580
PCF1: U04366 2581 PCF1:	gaaaacaatggagaaaatggaaatatgtcttctgattcccatgcattttctttc	2640
U04366 2641	gatacgggtgaaatagatttgaatgaaaataoaggaatttggatcgtatttaaaattccg	2700
PCF1: U04366 2701 PCF1:	acaacaaatggaaacgcaacactaggaaatcttgaatttgtagaagaggggccattgtca	2760
004366 2761	ggggaaacattagaatgggcccaacaacaagaacaacaatggcaagacaaaatggcaa	ga 2820
PCF1: 2821	aaacgtgcagcatcagaaaaaacatattatgcagcaaagcaagc	2865
U04366 2821	aaacgtgcagcatcagaaaaaacatattatgcagcaaagcaagc	2880
PCF1: 2866	gcagatta-tcaagaccaaaaacttaattctggtgtcgaaatgtcagattgttggcagcc	292
U04366 2881	 gcagattatcaagaccaaaaacttaattctggtgta—gaaatgtcagatttgttggcagc	294
PCF1: 2926	caaaacettgtacagtecattecttacgtatataatgatgegttaceggaaateeetgga 29	985
U04366 2941	caaaaccttgtacagtccattccttacgtatataatgatgcgttaccggaaatccctgga 30	000
PCF1: 2986	atgaactatacgagttttacagagttaacaaatagactccaacaagcatggaatttgtat 30)45
U04366 3001	atgaactatacgagttttacagagttaacaaatagactccaacaagcatqgaatttgtat 30)60
PCF1: 3046	gatetteaaaacgetataccaaatggagattttegaaatggattaagtaattggaatgea 3	105
U04366 3061 F1: 3106	gatetteaaaacgetataceaaatggagattttegaaatggattaagtaattggaatgea 3	120 165
U04366 3121 PCF1: 3166		180 225
U04366 3181		240

Cloning and Sequencing of a Coleopteran specific Novel cry gene of a local isolate of Bacillus

PCF1: 3226	acagcgagaaaagagggagtaggagacggatatgtgatcatccgtgatggtgcaaatcaq	3285	
U04366 3241		3300	
PCF1: 3286	acaqcgagaaaagagggagtaggagacggatatgtgatcatccqtqatggtgcaaatcag acagaaacactcacatttaatatgtgatgatgatacaggtgttttatctactgatcaa 3345	5500	
U043663301	a cagaa a cact ca catt ta a tat at g t g at g a	3360	
PCF1: 3346	actagetatateacaaaaacagtggaatteactecatetacagageaagtttggattgae 3405		
U04366 3361	actagctatatcacaaaaacagtggaattcactccatctacagagcaagtttggattgac 3420		
PCF1: 3406	atgagtgagaccqaaggtgtattcaacatagaaagtgtagaactcgtgttagaagaagag	3465	
004366 3421	atgagtgagaccgaaggtgtattcaacatagaaagtgtagaactcgtgttagaagaagag	3480	
PCF1: 3481 taa 3483			

U04366 3481 taa 3483

Figure 15: Comparison of *cry* gene cloned from local Bt. isolate 30382 with the published sequence of *cryIIIF* gene (Gene bank Accession#U04366)

IV. Discussion

According to Adang *et al.* (1993), over 60 cry genes encoding 26 distinct insecticidal crystal proteins have been sequenced, whereas Baum and Malver (1995) found that over 90 ICP genes have now been cloned and sequenced. Thompson *et al*; (1995) compared the primary sequence of 50 full length toxins and produced a computer-generated dendrogram of possible evolutionary relatedness.

A number of toxin genes effective against lepidopteran, coleopteran and diapteran larvae from different strains of Bt. have been cloned & expressed in *E. coli, Bacillus subtilis,* Pseudomonas, clavibacter, Baculovirus, and nuclear polyhederosis virus (Haider *et. al.*, 1988).

Screening for novel activities through biotoxicity assays alone may not be the most effective approach, although in practice worldwide. Since certain cry genes are poorly expressed (or even silent) in their native hosts (Lee and Aronson, 1991; Aronson *et al.*, 1991; Sanchis *et al.*, 1989; Chaambers *et al.*, 1991). Alternative screening methods include southern blotting in search of known homologous genes (Kronstad and Whiteley *et al.*, 1986), analysis of reactivity to different monoclonal antibodies (Hofte *et al.*, 1998) and electrophoretic analysis of PCR products using specific primers (Carozi *et al.*, 1991).

The availability of toxin genes permitted bioassays of individual crystal proteins to study their spectrum of insecticidal without interference from other toxins or other pathogenecity factors (spores, beta exotoxins etc).

The Bacillus thuringiensis strain 30382 was analyzed through gene cloning and sequencing. From the amino acid sequence of that gene, a set of primers was designed to amplify the full length cry gene. The amplified gene was cloned in a cloning vector, pGEM-T. Restriction analysis of the cloned fragment also confirmed the presence of cry3 gene within the clones. Southern blotting of the total DNA from isolate 30382 digested with Hind III enzyme showed that a cry3 type gene was present on approximately 4 kb fragment. Therefore southern hybridized 4 kb fragment might be the full length cry3f gene containing promoter, ribosomal binding sites other than regulatory sequences and 5'& 3' flanking sequences from isolate 30382. Homology studies of the sequences present in the gene data bank showed it a variant of a novel Cry III protein gene reported by Sato et al., (1994). Homology studies between two nucleotide sequences showed two changes at nucleotide 676 and 701 from 5' end. This change in nucleotide level was not affecting the protein sequence of the gene due to codon degeneracy at amino acid phenylalanine and proline. Two other significant deletion and insertion of nucleotides at position 2888 and 2909 of holotype cry F gene (Genebank Accession # U04366) near 3' end were observed. These changes were causing change in stretch of amino acids from valine, tyrosine, serine, glutamine, in holotype cry3 F to glycine, phenylalanine, alanine, asparginine respectively in the clone from CAMB isolate 30382. This change may have a drastic effect on the toxicity spectrum on the cry protein isolated from the local 30382, in comparison with the cry protein from strain Buibui. serovar japonesis. The cry3f gene has been reported to encode proteins of 129 kDa, which occurs in Bt. serovar japonesis (Ogiwara et al., 1995). The nucleotide sequencing of the gene cloned in present study was of more interest, hence it may provide more insight into the structure and function of this class of genes, because very small differences in crystal structure, including the presence or absence of protease processing sites, can have deleterious or beneficial effects on the toxicity of molecules (Ward et al., 1988; Haider and Eller 1989; Wu and Aronson1992). Newly found variations may further be helpful to extend the host spectrum of the cryIIIF type gene.

References

- [1]. Andow, D. A, Huet, A.-S. and Altosaar, I. 2001. An ounce of prevention enough to stem Asia's appetite for rice? Bt rice conference report Hangzhou, PRC, 27 Nov-1
- [2]. Aronson AI, E.-S., Mcgaughey W and Johnson D. (1991). The solubility of inclusion proteins from *Bacillus thuringiensis* is dependent upon protoxin composition and is a factor in toxicity to insects. Applied and Environmental Microbiology 57: 981-986.
- [3]. Ben-Dov E, Zaritski A. Dahan E, Barak Z, Sinai R, Manasherob R, Khamraev A, Troitskaya E, Dubitsky A, Berezina N and Margalith Y (1997). Extended screening by PCR for seven *cry* –group genes from field collected strains of *Bacillus thuringiensis*. Applied and Environmental Microbiology, 63(12) 4883-4890.
- [4]. Barton KA, Whiteley HR and Yang NS, (1987). *Bacillus thuringiensis* delta-endotoxin expressed in transgenic *Nicotiana tabaccum* provides resistance to lepidopteran insects. Plant Physiology 85: 1103-1109.
- [5]. Bhattacharya PR, (2000). Hyper production of Insecticidal crystal protein (delta-endotoxin) by *Bacillus thuringienesis var israelensis* is not related to sporulation specific biochemical functions Curr. Microbiol, 41 (3): 187-191.
- [6]. Birnboim HC and Dolly J, (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic acids Research. 7: 1513-1523.
- [7]. Burges, H. D. (ed). (1981). Microbiol control of pests and plants diseases 1970-1980. Academic press, Inc. (London), Ltd. London.
- [8]. Carozzi NB, Kramer VC, Warren GW, Evola S and Koziel MG, (1991). Prediction of insecticidal activity of *Bacillus thuringiensis* strains by polymerase chain reaction product profiles. Applied and Environmental Microbiology 57: 3057-3061.
- [9]. Chambers JA, Jelen A., Gilbert MP, Jany CS, Johnson TB and Gawron-Burke C (1991). Isolation and characterisation of a novel insecticidal crystal protein gene from *Bacillus thuringiensis* subsp. *aizawai*. Journal of Bacteriology 173: 3966-3976
- [10]. Coyle DR, MC Millan, JD, Krause, SC Hart, E.R, 2000. Laboratory and field evaluations of two *Bacillus thuringienesis* formulations Novodor and Raven, for control of cottonwood leaf beetle (Coleoptra Chrysomelidae), J. Econ. Entomol 93(3): 713-720.
- [11] Diaz-gomez, O, rodringnez JC, Shelton AM, Lagunes A, Bujanos R, (2000). Susceptibility of *Plutella xylostella* (L.) Lepidoptera: Pluetellidae populations in Mexico to commercial formulations of *Bacillus thringiensis* J. Econ. Entomol., 93 (3): 963-970.
- [12]. Dominic Amalraj Di Sahu SS, Jambuligam P, Boopati Doss PS, Kalynasundaram M, Das PK (2000). Efficiacy of an aqueous suspension and gramlar formulation of *Bacillus thuringiensis* (vectobac against mosquito larvae).
- [13]. Donovon WP, Gonzalez JM, Gilbert MP, and Dankosik C, (1988). Isolation and Characterization of EG2158, a new strain of *Bacillus thuringiensis*, toxic to coleopteran larvae, and nucleotide sequence of the toxic gene. Mol. Gen. Genet. 214:356-372.
- [14]. Dulmage, H. T. (1981). Insecticidal activity of isolates of *Bacillus thuringiensis* and their potential for pest control. In *Microbial Control of Pests and Plant Diseases* 1970-1980 (ed. H.D. Burgess). pp. 193-223. Academic Press, London.
- [15]. Federici BA, Luthy P, and Ibrarra JE (1990). The Parasporal body of *Bacillus thuringiensis* subsp. *Israelensis*: structure, protein composition and toxicity. In *Bacterial control of Mosquitos and Blackflies Biochemistry, Genetics and Applications of Bacillus thuringiensis and Bacillus sphaericus* (ed. H. de Barjac and D.J. Sutherland), pp. 16-44. Rutgers University press, New Burnswick, NJ.USA.
- [16]. Gill, S. S., Cowles, E. A. and Pietrantonio, P. V. (1992). The mode of action of *Bacillus thuringiensis* endotoxins. Annual Review of Entomology 37, 615-636.
- [17]. Guillet, P., D. C. Kurtak, B. Philippon, and R. Meyer. (1990).Use of *Bacillus thuringiensis* israelensis for on chocerciasis control in West Africa, p. 187-201. In H. De Barjac and D. Sutherland (ed), *Bacterial control of mosquitoes and blacflies: Biochemistry, genetics, and applications of Bacillus thuringiensis and Bacillus sphaericus*. Rutgers University Press, New Brunwick
- [18]. Haider MZ and Ellar DJ (1998). Nucleotide sequence of *Bacillus thuringienesis* aizawai ICI entamocidal crystal protein gene. Nucleic Acids Research 16:10927
- [19]. Haque M A, Nakakita H, Ikenaga H, Sota N, (2000).Development-inhibiting activity of some tropical plants against Sitophiluszeamais Motschulsky, Coleoptera Curculionidae).J.Stored Prod. Res.,36:281-287.
- [20]. Held GA., Kawanishi CY, Huang YS, (1990). Characterization of the parasporal inclusion of *Bacillus thuringiensis* subsps. Kyushuesis. Journal of Bacteriology 172: 481-483.
- [21]. Held GA, Bulla LA, Jr, Ferrari E, Hoch J, Aronson AI and Minnich SA. (1982). Cloning and localisation of the lepidopteran protoxin gene of *Bacillus thuringiensis* subsp. *kurstaki*. Proceedings of the National Academy of Sciences, USA 79: 6065-6069.
- [22]. Haider MZ and Ellar DJ (1988). Nuleotide sequence of a *Bacillus thuringiensis aizawai* ICI entomocidal crystal protein gene. Nucleic Acids Research 16: 109-127.
- [23]. Herrnstadt, C., Soares, G. G., Wilcox, E. R., and Edwards. D. L., 1986. A new strain of *Bacillus thuringiensis* with activity against coleopteran insects. *Bio/Technology* **4**, 305-308.
- [24]. Hofte, H., and Whiteley, H.R., (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242-255.
- [25]. Krattiger AF, (1997). Insect resistant in crops: A case study of *Bacillus thuringiensis (Bt.*) and its transfer to Developing Countries *ISSAAA Briefs* No. 2. ISSAAA: Ithaca, NY. pp. 1-42.
- [26]. Kreig A, Huger A, Langenbruch G, and Schetter W, (1983). Bacillus thuringiensis (Bt.) and its transfer to developing countries. ISSAAA Briefs No. 2. ISSAAA: Ithaca, NY. pp. 1-42.
- [27]. Kronstad, J.W., H.E. Scknepf and H.R. Whiteley, (1983). Diversity of location for *Bacillus thuringiensis* crystal protein genes. J. Bacteriol. 154:419-428.
- [28]. Kronstad JW, and HR Whiteley, (1986). Three classes of homologous *Bacillus thuringiensis* crystal protein genes. Gene 43:29-40.
- [29]. Kumar PA,(2002), Bacillus thuringiensis and Insect Pest Management in Agriculture. Proceed. AP Acad. Sci.6(1):29-36.
- [30]. Lee CS and Aronson AI (1991). Cloning and analysis of δ-endotoxin genes from Bacillus thuringiensis subsp. Journal of Bacteriology 173: 6635-6638.
- [31]. Lereclus, D., Delecluse, A. and Lecadet, M.-M. (1993). Diversity of *Bacillus thuringiensis* toxins and genes. In *Bacillus thuringiensis, An Environmental Biopesticide: Theory and Practice* (Eds. P. F. Entwistle, j. S. Cory, M. J. Bailey and S. Higgs), pp. 37-69. John Wiley and Sons, Chichester, U.K.
- [32]. Mc Pherson SA, Perlack FJ, Fuchs RL, Marrone PG, Lavrik PB, and Fischhoff DA, (1988). Characterization of the coleopteranspecific protein gene of *Bacillus thuringiensis* var. *tenebrionis*. Bio/Technology. 6: 61-66.
- [33]. Mulla, M. S. (1990). Activity, field efficacy and use of *Bacillus thuringiensis israelensis* against mosquitoes, p. 134-160. In H. De Barjac and Sutherland (ed). Bacterial control of mosquitoes and blackflies: *Biochemistry, genetics, and applications of Bacillus thuringiensis and Bacillus sphaericus*. Rutgers University Press, New Brunswick, K.J.
- [34]. Pimentel D, 1991. CRC handbook of pest management in agriculture, 2nd ed., vol.1. CRC Press, Boca Raton, Fla.
- [35]. Rahat Makhdoom, Ph.D Thesis, Cloning and Sequencing of the Delta Endotoxin gene from locally isolated *Bacillus thuringiensis*, Toxic against Spotted bollworm.

- [36]. O.Roth and J.Kurtz,the stimulation of immune defense accelerated development in red flourbeetle (*Tribolium castaneum*).J.Evol.Bio.21(6),(2008),1703-1710.
- [37]. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Highuchi R, Horn GT, Mullis KB, and Erlich HA, (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491.
- [38]. Schnepf HE and Whiteley HR (1981). Cloning and expression of the *Bacillus thuringiensis* crystal protein gene in *Escherichia coli*. Proceedings of the National of Science, USA 78, 2893-2897.
- [39]. Sekar V, Thompson DV, Maroney MJ, Bookland RG and Adang MJ (1987). Molecular cloning and characterization of the insecticidal crystal protein gene of *Bacillus thuringiensis* var. *tenebrionis*. Proceedings of the National Academy of Sciences, USA 84, 7036-7040.
- [40]. Sick A, Gaertener F and Wong A (1990). Nucleotide sequence of a coleopteran-active toxin gene from a new isolate of *Bacillus thuringiensis* subsp. *tolworthi*. Nucleic acids Resaearch 18: 1305.
- [41]. Shivkumar A, Gundling GJ, Bensen TA, Casuto D, Miller MF and Spear BB, (1986). Vegetative expression of the delta-endotoxin genes of *Bacillus thuringiensis* subsp. *Kurstaki in Bacillus subtilis. Journal of Bacteriology* 166: 194-204.
- [42]. Sanchis V and Lereclus D (1999). Bacillus thuringiensis: A biotechnology model. J. Soc. Biol. 193: 523-530.
- [43]. Thompson, A. T., Schnepf, H. E. and Feitelson, J. S. (1995). Structure, function and engineering of *Bacillus thuringiensis* toxin. In *Genetic Engineering. Vol. 17*(ed. J. K. Setlow), Plenum Press, New York.
- [44]. Vaeck M, Reyanaerts A, Hofte H, Jensens S, De Beukeleer M, Dean C, Zabeau M, Van Montagu M and Leemans J, 1987. Transgenic plants protected from insect attack. Nature (London) 382: 33-37.